内容概要:本文针对黄平《润滑数值计算方法》一书中随机粗糙线接触弹流问题的Fortran代码存在的语法与数值计算错误进行修正,重点解决了数组越界、迭代收敛条件不合理等问题,并通过Matlab实现数据可视化。修正后压力分布与油膜厚度更符合物理实际,揭示了经典教材代码在实际运行中可能存在的严重偏差。 适合人群:从事润滑理论、弹流润滑数值模拟、Fortran编程或机械工程相关研究的研究生及科研人员。 使用场景及目标:①学习弹流润滑仿真中Fortran代码的常见错误及调试方法;②掌握Fortran与Matlab联合进行数值计算与可视化的技术路径;③理解数值稳定性与收敛条件对仿真结果的影响。 阅读建议:在复现代码时应重点关注数组维度设置与文件读写格式,建议结合hexdump等工具验证二进制输出的正确性,同时采用全局误差判断提升迭代稳定性。
2025-09-22 21:12:47 467KB Fortran 数值计算 Matlab 数组越界
1
如何使用Matlab进行随机森林(RF)的回归预测及其特征重要性排序。主要内容涵盖从数据准备到模型训练、预测及评估的完整流程,并提供具体代码示例帮助读者快速上手。文中还特别强调了特征重要性的计算方法以及如何根据重要性对特征进行排序,使读者能更好地理解和应用随机森林这一强大的机器学习工具。 适合人群:对机器学习有一定了解,特别是希望深入理解随机森林算法及其在Matlab环境下实现的技术人员。 使用场景及目标:① 利用随机森林进行数据回归预测;② 计算并排序特征重要性;③ 替换自有数据进行实际操作练习。 其他说明:本文提供的代码可以直接运行,但为了获得最佳效果,建议读者根据自身数据特点适当调整参数配置。此外,由于机器学习涉及大量实验验证,鼓励读者多次尝试不同设置以加深理解。
2025-09-20 14:26:51 254KB
1
利用COMSOL软件构建的三维离散裂隙注浆模型,旨在模拟浆液在复杂地质条件下的扩散行为。模型考虑了浆液粘度的空间和时间衰减特性以及裂隙的随机分布特征。通过MATLAB定义了复杂的粘度函数,Python用于生成随机裂隙网络,C++风格的双流体跟踪法(TFT)实现了两相流体的相互作用。此外,还建立了时间运输模型来计算浆液在不同位置的停留时间。实验结果显示,在2MPa的压力下,浆液能够在短时间内有效填充裂隙,相比传统模型,封堵范围增加37%,浆液浪费减少52%。 适合人群:从事岩土工程、地质工程及相关领域的研究人员和技术人员,尤其是对注浆技术和数值模拟感兴趣的专业人士。 使用场景及目标:适用于需要精确模拟浆液在复杂地质环境中扩散情况的研究项目,帮助优化注浆工艺参数,提高施工效率并降低成本。 其他说明:文中提到的关键技术如粘度时空双杀模型、裂隙生成器和双流体跟踪法均为创新点,能够显著提升模拟精度。同时提醒使用者注意网格划分的质量,避免因网格过粗而导致的数值误差。
2025-09-17 16:49:40 600KB
1
永磁同步电机(SPM)在现代工业中的重要性和面临的高频振动噪声问题。文中重点探讨了SVPWM(空间矢量脉宽调制)算法和载波扩频调制技术的优化方法。对于SVPWM算法,作者提出了多种随机波形(如正弦波、锯齿波、方波)和自研混合算法来优化高频振动噪声并提升能效。关于载波扩频调制,则强调了扩频因子和扩频码选择对抗干扰能力和通信功耗的影响。此外,还利用Simulink建立了控制仿真模型,以便直观评估优化效果。最后对未来的技术发展方向进行了展望。 适合人群:从事电机控制系统设计、电力电子技术研究的专业人士,以及对永磁同步电机高频振动噪声优化感兴趣的科研工作者。 使用场景及目标:适用于需要深入了解永磁同步电机SVPWM算法和载波扩频调制技术原理及其实际应用的人群。目标在于掌握这两种技术的具体实现方式,特别是如何通过优化减少电机运行时产生的高频振动噪声。 其他说明:本文不仅提供了理论分析,还有具体的实验数据支持,有助于读者全面理解相关技术的实际应用价值和发展趋势。
2025-09-16 21:35:54 1.05MB
1
永磁同步电机SVPWM算法载波扩频调制技术与随机波形混合算法研究——Simulink模型在高频振动噪声优化中的探索,永磁同步电机SVPWM算法载波扩频调制算法控制仿真simulink模型。 用于优化电机高频振动噪声优化研究。 包括随机(可扩展正弦、锯齿、方波),自研混合算法等。 ,关键词:永磁同步电机;SVPWM算法;载波扩频调制算法;控制仿真;Simulink模型;高频振动噪声优化;随机(可扩展正弦、锯齿、方波);自研混合算法。,"基于SVPWM算法与载波扩频调制的永磁同步电机控制仿真与振动噪声优化研究"
2025-09-16 21:33:43 703KB paas
1
基于SVPWM算法的永磁同步电机载波扩频调制优化模型及其在电机高频振动噪声控制中的仿真研究:随机信号和自研混合算法的综合应用,永磁同步电机SVPWM算法载波扩频调制技术:随机混合算法仿真研究及高频振动噪声优化,永磁同步电机SVPWM算法载波扩频调制算法控制仿真simulink模型。 用于优化电机高频振动噪声优化研究。 包括随机(可扩展正弦、锯齿、方波),自研混合算法等。 ,永磁同步电机;SVPWM算法;载波扩频调制算法;控制仿真;Simulink模型;优化;高频振动噪声;随机信号;混合算法,基于SVPWM算法与载波扩频调制的永磁同步电机控制仿真与振动噪声优化研究
2025-09-16 21:31:26 704KB kind
1
gmail生成器 生成具有随机凭据的新Gmail帐户的Python脚本。 执照 该程序是在MIT许可下发布的。 关于 该脚本是为研究目的而编写的,几年前,现在我对其进行了一些重新设计,以实现更好的功能。 它将为新的Gmail帐户生成随机凭证。 它会自动启动Firefox并自动定向,您无需执行任何其他操作即可运行脚本。 我从未在任何其他系统上进行过测试,因此可能需要根据您的系统进行一些配置。 您可能需要什么以及如何运行脚本 您必须安装 火狐浏览器 用菜单图标替换/source/images/start_button.png下的图像 运行脚本 python gmail_generator.py or python3 gmail_generator.py 免责声明 作者对脚本造成的任何损害不承担任何责任,因此请谨慎使用。 作者: 斯塔夫罗斯·格里哥里欧(Stavros Grigorio
2025-09-13 10:51:30 12.92MB Python
1
内容概要:本文介绍了基于Kerala数据集的洪水暴雨内涝预测模型,旨在利用机器学习算法预测洪水发生的可能性。文中详细探讨了五种机器学习算法——KNN分类、逻辑回归、支持向量机、决策树和随机森林的具体应用及其优劣。通过对Kerala地区的降雨数据进行建模和验证,最终选出了表现最优的模型。文章不仅提供了完整的代码示例和注释,还涵盖了数据预处理、特征选择、模型训练与评估等多个关键环节。 适合人群:对机器学习感兴趣的研究人员、数据科学家以及希望了解如何运用机器学习解决实际问题的技术爱好者。 使用场景及目标:适用于需要进行自然灾害预测的机构和个人,特别是那些关注洪水、暴雨和内涝等气象灾害的人群。通过学习本文,读者能够掌握如何构建和优化机器学习模型,从而为防灾减灾提供科学依据。 其他说明:虽然本文主要聚焦于洪水预测,但它所涉及的方法论同样适用于其他类型的自然灾难预测任务,如地震预警、台风路径预测等。此外,文中提供的代码和数据集可以帮助读者快速上手实践,进一步加深对机器学习的理解。
2025-09-11 09:44:22 644KB 机器学习 数据挖掘 决策树 随机森林
1
北京交通大学的随机过程课程提供了丰富的学习资源,包括各位老师准备的PowerPoint演示文稿、历年真题及其详细解析、考试资料以及复习重点。这些资源为学生提供了全面的学习支持和备考指导,帮助他们更好地理解课程内容,熟悉考试形式,并有效备战考试。老师们的PPT演示文稿通常包含了课程的重点知识点和例题讲解,帮助学生系统地学习课程内容。历年真题及其解析则为学生提供了宝贵的练习机会和了解考试出题方向的途径,有助于他们熟悉考试形式,提升解题能力。此外,提供的考试资料和复习重点也为学生的复习备考提供了重要参考,让他们能够有针对性地进行复习,提高复习效率,从而取得更好的学习成绩。
2025-09-04 13:23:09 468.05MB 随机过程 课程资源
1
"南京邮电大学通达学院概率统计与随机过程复习ppt" 概率统计是统计学的一个重要分支,它研究随机事件的概率分布和统计性质。在随机过程中,事件的发生是随机的,而概率统计就是研究这些随机事件的规律和统计特征。 随机过程是指一个随机事件序列,它具有随机性和不确定性。在随机过程中,我们可以研究事件的概率分布、均值函数、自相关函数等统计特征。 在本文中,我们将讨论随机过程的基本概念和性质,包括平稳过程、平稳的定义和判断方法,以及随机过程的均值函数和自相关函数的计算方法。 我们需要定义什么是随机过程。随机过程是一个随机事件序列,记为{Z(t), t ∈ T},其中Z(t)是一个随机变量,t ∈ T是一个时间点的集合。 在随机过程中,我们经常研究的统计特征有均值函数、自相关函数和谱密度函数。均值函数是指随机过程的数学期望,它是随机过程的一种统计特征。自相关函数是指随机过程中两个时间点之间的相关性,它是随机过程的另一种统计特征。 在本文中,我们将讨论随机过程的均值函数和自相关函数的计算方法。我们需要定义均值函数和自相关函数的计算公式。均值函数的计算公式为: E[Z(t)] = μ(t) 其中,E[ ]表示数学期望,Z(t)是随机变量,μ(t)是均值函数。 自相关函数的计算公式为: R(t, τ) = E[Z(t)Z(t + τ)] 其中,R(t, τ)是自相关函数,Z(t)和Z(t + τ)是随机变量,τ是时间差。 在随机过程中,我们还需要判断是否是平稳过程。平稳过程是指随机过程的统计特征不随时间改变的过程。在判断是否是平稳过程时,我们可以使用均值函数和自相关函数的计算结果。如果均值函数是常数,自相关函数只与时间差有关,那么该随机过程就是平稳过程。 例如,在一个随机过程中,我们可以计算均值函数和自相关函数。如果均值函数是常数,自相关函数只与时间差有关,那么该随机过程就是平稳过程。 在本文中,我们还讨论了马尔科夫链的概念和性质。马尔科夫链是一个特殊的随机过程,它具有马尔科夫性质。在马尔科夫链中,我们可以研究状态转移概率矩阵和相应的统计特征。 例如,在一个马尔科夫链中,我们可以计算状态转移概率矩阵和相应的统计特征。如果状态转移概率矩阵满足一定的条件,那么该马尔科夫链就是齐次马尔科夫链。 随机过程是统计学的一个重要分支,它研究随机事件的概率分布和统计性质。在本文中,我们讨论了随机过程的基本概念和性质,包括平稳过程、平稳的定义和判断方法,以及随机过程的均值函数和自相关函数的计算方法。
2025-09-02 09:50:39 1.3MB 概率统计
1