在这项工作中,提出了一种用于裂纹检测的深度监督网络。在该网络中,DeepLab被用作密集特征提取器,以获得多尺度卷积特征。采用了一种新的多尺度特征融合模块。
该模块背后的主要动机是解决U形结构中具有语义信息的深层特征在逐层融合过程中被稀释的问题。深度监督学习用于多尺度特征的集成直接监督。此外,采用加权交叉熵损失函数来解决路面裂缝数据的样本不平衡问题。为了进行性能评估,我们分别在三个公共裂缝数据集上进行了实验。实验结果表明,我们的方法优于最先进的裂纹检测方法。
2022-09-04 20:05:31
15.32MB
强化学习
1