采用的是美国西储大学轴承数据中心的滚动轴承数据,贝叶斯优化后的准确率高达99%,也包含了和遗传算法以及网格搜索优化支持向量机的对比!希望可以帮助到大家!!!给两个积分意思一下就行了
1
糖尿病发作检测 @machinelearning{han2021cs, title={Diabetes Onset Detection using Keras Model}, author={Nguyen, Han}, year={2021}, associate={Personal Project} } 简要描述;简介 该项目是一个基于机器学习的应用程序,通过Keras模型和寻找最佳超参数的训练方法(使用网格搜索和scikit-learn并优化神经元数量)来预测个人是否患有糖尿病。 有关更多详细信息,请参阅《 我学到的是 在这个项目中,我利用自己的知识来构建Keras模型,以及对参数的不同更新(从学习率,辍学,激活,神经元初始化),以了解哪种方法可以产生最佳的准确性。 我还了解到,使用此模型,训练精度非常高; 但是,测试精度略低于80%。 这意味着我们在误报和误报方面
2021-03-16 14:07:09 23KB JupyterNotebook
1
蛋白质的磷酸化是重要的翻译后修饰,可激活信号通路中包括的各种酶和受体。 为了减少通过费力的实验来鉴定磷酸化位点的成本,已经积极研究了其计算预测。 在这项研究中,通过采用一组新的特征,并在通过支持向量机进行训练之前,通过随机森林在网格搜索中应用特征选择,我们的方法对两个不同的数据集实现了更好或相当的磷酸化位点预测性能。
1
SVM参数优化 网格搜索
2019-12-21 21:27:44 1KB SVM 网格搜索
1
网格搜索算法,优化向量机。对于向量机的参数进行最优化处理
2019-12-21 20:52:58 8KB 优化向量机
1