针对PointNet模型只针对孤立点提取特征信息,而对邻域结构的信息提取能力不足的问题,提出基于图卷积网络的三维点云分类分割模型GraphPNet。首先将三维点云转换成无向图结构,利用该图结构得到点云的邻域信息,通过将邻域信息与单个点信息融合的方式提高分类与分割的准确率。在分类实验中,本文在ModelNet40数据集上进行训练与测试,并且与3D ShapeNets、VoxNet、PointNet模型的分类精度进行比较,其分类精度优于这些模型。在分割实验中,使用ShapeNet数据集进行训练与测试,并且与PointNet模型等分割模型得到的平均交并比(mIoU)值进行比较,验证了GraphPNet在分割实验中的有效性。
2022-05-09 17:48:18 3.88MB 图像处理 分类与分 深度学习 PointNet
1
在过去的十年中,神经网络取得了巨大的成功。但是,只能使用常规或欧几里得数据来实现神经网络的早期变体,而现实世界中的许多数据都具有非欧几里得的底层图形结构。数据结构的不规则性导致了图神经网络的最新发展。在过去的几年中,正在开发图神经网络的各种变体,其中之一就是图卷积网络(GCN)。GCN也被视为基本的图神经网络变体之一。 在本文中,我们将更深入地研究由Thomas Kipf和Max Welling开发的图卷积网络。我还将在使用NetworkX构建第一个图形时给出一些非常基本的示例。到本文结尾,我希望我们对图卷积网络内部的机制有更深入的了解。
2022-03-19 13:14:34 3KB gcn
1
行人重识别课程主要包括三大核心模块:1.2020经典算法(论文)详细解读;2.项目源码分析;3.实战应用;通俗讲解CVPR等会议最新行人重识别方向算法及其实现,基于PyTorch框架展开实战,逐行讲解全部项目源码及其应用实例。整体风格通俗易懂,用最接地气的方式带领同学们掌握最新行人重识别算法并进行项目实战。
1
说明: 使用三种图卷积做一个简单的交通流量预测模型。 我所用的环境: PyTorch=1.4.0 torchvision=0.5.0 cudatoolkit=10.1 cudnn=7.6.3 若哪里不足请指出来,共同学习。
2021-12-31 17:57:39 39.31MB 附件源码 文章源码
1
PointNet是三维点云分类中具有代表性的研究成果,该模型开创性地利用深度学习模型对点云进行分类,取得了较好的效果。但是PointNet模型只考虑点云的全局特征而忽略每个点的局部信息,为弥补这个缺陷,提出基于图卷积网络的点云分类模型。在PointNet模型中插入一个kNN graph层,通过在点云空间构造k近邻图,利用图结构有效地获取点云的局部信息,从而提高整体点云分类准确率。分类实验在ModelNet40数据集上进行,对比不同近邻值k对输出精度的影响,结果表明在k取20时,分类准确率最高,达到了93.2%,比PointNet高4.0%。
2021-12-20 20:48:19 2.99MB 图像处理 三维点云 深度学习 图卷积网
1
蔡氏电路matlab仿真代码MMGCN:用于微视频个性化推荐的多模式图卷积网络 这是本文的Pytorch实现: 魏银威,王翔,聂立强,何湘南,洪理昌和蔡达生(2019)。 MMGCN:多模式图卷积网络,用于微视频的个性化推荐。 在法国10月,NICE的ACM MM`19。 2019年21月25日作者:魏因伟博士(hotmail.com上的weiyinwei) 介绍 多模式图卷积网络是一种基于图卷积网络的新颖多模式推荐框架,可对特定于模式的用户偏好进行显式建模,以增强微视频推荐。 我们更新代码,并使用完整的排名策略进行验证和测试。 引文 如果您想在研究中使用我们的代码和数据集,请引用: @inproceedings{MMGCN, title = {MMGCN: Multi-modal graph convolution network for personalized recommendation of micro-video}, author = {Wei, Yinwei and Wang, Xiang and Nie, Liqiang and He, Xiangnan and Hon
2021-12-19 19:05:29 10KB 系统开源
1
VGCN-PyTorch 感谢您的关注。在此仓库中,我们提供了论文。 先决条件 scipy == 1.2.1 opencv_python == 4.1.0.25 numpy == 1.16.4 火炬视觉== 0.3.0 火炬== 1.1.0 枕头== 6.2.0 安装 在先决条件中安装所有依赖项 准备数据 获取 , 和 下载 FoV选择 matlab fov_selection/demo.m 训练 python main.py --root1 cviqd_local_epoch.pth --root2 cviqd_global_epoch.pth --save test 测验 python main.py --resume cviqd_model.pth --skip_training 引文 您可以在论文中引用它。非常感谢。 @article{xu2020blind, titl
2021-12-12 16:21:17 3.14MB Python
1
GCN_predict-Pytorch 交通流量预测。 用PyTorch实现图卷积网络(GCN,GAT,Chebnet) 要求: -火炬 -脾气暴躁 -熊猫 -Matplotlib 数据集示例: 数据集由Caltrans绩效评估系统(PEMS-04)收集 数量:307个探测器 日期:2018年1月至2月(2018.1.1——2018.2.28) 特色:流动,占据,速度。 探索数据分析: 1,具有流量,占用和速度三个特点,一是对数据分布进行可视化分析 2.运行代码:python data_view.py 3)每个节点(检测器)都有三个特征,但是两个特征的数据分布基本上是固定的,因此我们只采用一维特征。 读取数据集: 在traffic_dataset.py文件中,get_adjacent_matrix和get_flow_data函数用于读取相邻的矩阵和流数据。 模型训练: 在tra
2021-11-12 15:38:20 39.65MB 附件源码 文章源码
1
text_gcn 本文中Text GCN的实现: 梁耀,毛成胜,罗源。 “图卷积网络用于文本分类。” 在第33届AAAI人工智能会议(AAAI-19)中 要求 Python 2.7或3.6 Tensorflow> = 1.4.0 再现结果 运行python remove_words.py 20ng 运行python build_graph.py 20ng 运行python train.py 20ng 在为其他数据集生成结果时,将上述3个命令行中的20ng更改为R8 , R52 , ohsumed和mr 。 输入数据示例 /data/20ng.txt表示文档名称,培训/测试组,文档标签。 每行都是一个文档。 /data/corpus/20ng.txt包含每个文档的原始文本,每行对应/data/20ng.txt的相应行 prepare_data.py是准备自己的数据的示例,请注意,文档或句子中的“ \ n”已删除。 归纳版 文本GCN的归纳版本是 ,其中培训过程中未包括测试文档。
1
MixHop和N-GCN ⠀ PyTorch实现的“ MixHop:通过稀疏邻域混合进行的高阶图卷积体系结构”(ICML 2019)和“一个高阶图卷积层”(NeurIPS 2018)。 抽象 最近的方法通过近似图拉普拉斯算子的本征基,将卷积层从欧几里得域推广到图结构数据。 Kipf&Welling的计算效率高且使用广泛的Graph ConvNet过度简化了逼近度,有效地将图形卷积呈现为邻域平均算子。 这种简化限制了模型学习三角算子(图拉普拉斯算子的前提)的作用。 在这项工作中,我们提出了一个新的图卷积层,该层混合了邻接矩阵的多种幂,从而使它能够学习增量算子。 我们的层展现出与GCN相同的内
2021-10-27 23:22:04 1.78MB machine-learning deep-learning tensorflow pytorch
1