分析了粒子群优化算法的收敛性,指出它在满足收敛性的前提下种群多样性趋于减小, 粒子将会因速度降低而失去继续搜索可行解的能力;提出混沌粒子群优化算法, 该算法在满足收敛性的条件下利用混沌特性提高种群的多样性和粒子搜索的遍历性, 将混沌状态引入到优化变量使粒子获得持续搜索的能力.实验结果表明混沌粒子群优化算法是有效的,与粒子群优化算法、遗传算法、模拟退火相比,特别是针对高维、多模态函数优化问题取得了明显改善.
针对烟花算法(FA) 寻优过程中粒子间信息交流少、对最优点位置不在原点和原点附近的目标函数求解能力差的缺点, 提出带有引力搜索算子的烟花算法(FAGSO). 算子利用粒子间相互引力作用对粒子维度信息进行改善, 以提高算法的优化性能. 6 个标准和增加位置偏移测试函数的仿真结果表明, FAGSO相比于FA、粒子群算法和引力搜索算法, 在寻优速度和寻优精度方面有更好的优化性能.