内容概要:本文详细介绍了利用自适应遗忘因子递推最小二乘法(AFFRLS)和扩展卡尔曼滤波(EKF)进行锂电池参数和荷电状态(SOC)联合估计的方法。首先介绍了一阶RC模型作为电池的等效电路模型,接着阐述了AFFRLS中自适应遗忘因子的作用以及其实现细节,然后讲解了EKF在非线性环境下的应用,特别是在SOC估计中的具体步骤。最后讨论了两种算法的联合使用策略,包括参数和状态的双时间尺度更新机制,并提供了具体的MATLAB代码实现。 适合人群:从事电池管理系统的研发人员、对电池状态估计感兴趣的科研工作者和技术爱好者。 使用场景及目标:适用于需要精确估计锂电池参数和SOC的应用场合,如电动汽车、储能系统等。主要目标是提高SOC估计的准确性,减少误差,确保电池的安全性和可靠性。 其他说明:文中提到多个注意事项,如OCV-SOC曲线的构建、初始参数的选择、协方差矩阵的初始化等。此外,还提供了一些调参经验和常见问题的解决方案,帮助读者更好地理解和应用这些算法。
2025-04-23 17:19:08 1.06MB
1
多元线性回归的参数估计,介绍多元线性回归的参数估计
2025-04-19 10:11:32 448KB 多元线性回归的参数估计
1
信号检测与估计是通信工程和电子工程领域中的核心课程,主要研究如何在噪声环境中识别和量化信号的存在,以及如何对信号进行准确的参数估计。这一领域的理论和技术对于理解和设计现代通信系统至关重要,如无线通信、雷达探测、图像处理等。 在“信号检测与估计”的课程中,通常会涵盖以下几个关键知识点: 1. **随机过程和噪声模型**:学习者首先要理解随机变量和随机过程的基本概念,包括高斯噪声、白噪声、有色噪声等常见噪声类型及其特性。这为后续的信号分析和处理奠定了基础。 2. **检测理论**:这一部分主要涉及如何判断一个信号是否存在,通常通过比较观测数据与假设的噪声背景来实现。关键概念包括似然比检验、贝叶斯决策理论以及阈值检测等。例如,奈奎斯特定理在信号检测中的应用,它定义了在给定信噪比下,检测信号的最佳阈值。 3. **估计理论**:一旦确定信号存在,接下来就是估计其参数,如频率、幅度、相位等。常见的估计方法有矩估计、最大似然估计、最小二乘估计等。最大似然估计尤其重要,因为它在无先验信息时通常提供最佳性能。 4. **匹配滤波器**:匹配滤波器是信号检测中的一个重要工具,它能最大化输入信号的能量,从而提高检测性能。匹配滤波器的设计通常基于已知的信号模型。 5. **卡尔曼滤波**:在处理动态系统的估计问题时,卡尔曼滤波器是一种高效的方法。它是一种递归的估计算法,适用于线性高斯系统,但在非线性系统中也有扩展形式,如扩展卡尔曼滤波和粒子滤波。 6. **谱分析**:包括傅立叶变换、拉普拉斯变换和小波分析等,用于将时域信号转换到频域,以便更好地分析信号的频谱特性,这对于检测和识别不同频率成分的信号至关重要。 7. **优化方法**:在估计信号参数时,常常需要解决优化问题。梯度下降法、牛顿法和遗传算法等是常见的优化手段。 课件“20100928142454(1).rar”、“课件3.rar”和“课件2.rar”可能包含这些主题的详细讲解和例题,而“信号检测与估计专题讲座2.rar”则可能是对某一特定话题的深入探讨,比如特定的检测技术或复杂的估计策略。通过深入学习这些课件,通信学院的学生可以系统地掌握信号检测与估计的基本理论和实际应用技巧,为未来在通信、雷达或相关领域的职业生涯打下坚实的基础。
2025-04-18 15:43:36 32.83MB 信号检测与估计
1
Mode LastWriteTime Length Name ---- ------------- ------ ---- -a---- 2020/3/9 12:03 753648 信号检测与估值2.pdf -a---- 2020/3/9 12:06 1828937 信号检测与估值2.pptx -a---- 2020/4/26 10:31 989626 信号检测与估值6.pdf -a---- 2020/3/4 14:34 722998 信号检测与估值L2.pdf -a---- 2020/3/16 10:26 1079179 信号检测与估值L3.pdf -a---- 2020/4/13 10:31 381236 信号检测与估值L4.pdf -a---- 2020/5/19 15:33 824586 信号检测与估值L5(update).pdf -a---- 2020/4/13 10:31 552662 信号检测与估值L5.pdf -a---- 2020/4/13 10:31 584747 信号检测与估值L6.pdf -a---- 2020/4/13 10:31 458186 信号检测与估值L7.pdf -a---- 2020/5/19 15:33 950091 信号检测与估值L8-update.pdf -a---- 2020/4/19 23:43 948653 信号检测与估值L8.pdf -a---- 2020/5/30 22:09 463511 信号检测与估值L9.pdf -a---- 2020/3/4 14:34 754804 信号检测与估值_L1.pdf -a---- 2020/3/4 14:34 17780466 信号检测与估计 第3版_12975000.pdf -a---- 2020/6/26 20:31 27469176 课件.zip
2025-04-18 15:30:07 26.2MB 信号检测与估计 信息工程学院
1
正交时频与空间 (OTFS) 调制是一项很有前途的技术,可以满足未来移动系统的高多普勒要求。OTFS 调制将信息符号和导频符号编码到二维 (2D) 延迟多普勒 (DD) 域中。接收到的符号在衰落信道中受到多普勒间干扰 (IDI),并在 DD 域中的非整数索引处采样分数多普勒频移。IDI 被视为不可避免的影响,因为分数多普勒频移无法直接从接收到的导频符号中获得。在本文中,我们提供了一种分数多普勒通道的信道估计解决方案。所提出的估计为 DD 域中的 OTFS 输入-输出关系提供了新的见解,即具有较小近似值的 2D 圆形卷积。根据输入-输出关系,我们还提供了一种使用估计信道信息的低复杂度信道均衡方法。我们通过仿真证明了所提出的信道估计和均衡在多个信道中的误差性能。仿真结果表明,在高迁移率环境中,采用所提方法的整体系统性能优于具有理想信道估计的正交频分复用 (OFDM) 和使用伪序列的常规信道估计方法。 代码包内容 此代码包的主要功能是 和 。本文中的图 3 就是使用这些代码生成的。OTFS.mOFDM.m 这些代码分别是 OTFS 和 OFDM 收发器的框架。
2025-04-17 21:42:44 69KB OFDM 信道估计 信道均衡
1
本文将详细介绍全国大学生电子设计竞赛中的D题——信号调制方式识别与参数估计装置的设计要求和功能。此装置需能够识别不同类型的调制信号,并对其进行参数估计,同时提供解调信号供示波器观察。 基本要求涉及三种主要的模拟调制方式:AM(幅度调制)、FM(频率调制)以及连续载波(CW)。对于AM信号,装置需能识别调制信号频率F为1kHz时的AM信号,估算并显示调幅系数am,同时输出解调信号ou。对于FM信号,当调制信号频率F为5kHz时,装置需要估计调频系数fm和最大频偏maxΔf,同样输出解调信号。在未知调制方式的情况下,装置应能自动识别调制类型并显示结果。 此外,装置需要进一步扩展功能,当调制信号频率F为1kHz到5kHz之一时,装置应能识别AM或FM信号,并相应地估计和显示参数,如AM的调制信号频率F和调幅系数am,FM的调制信号频率F、调频系数fm和最大频偏maxΔf。如果识别为CW信号,仅显示"CW"。 发挥部分则涉及到数字调制,包括2ASK(二进制幅度键控)、2PSK(二进制相移键控)和2FSK(二进制频率键控)。对于2ASK,装置需估计码速率cR并显示二进制码序列波形;对于2FSK,除了估计码速率cR,还需显示移频键控系数h和解调后的二进制码序列;对于2PSK,也需估计码速率cR并显示解调后的二进制码序列。所有这些功能都需要在载波电压峰峰值为100mV、载频cf为2MHz的条件下完成。 在参数估计的准确性方面,装置的误差要求如下:am估计值与实际值的误差不超过0.1;fm估计值与实际值的误差不超过0.3;F估计值的误差不超过50Hz;maxΔf估计值的误差不超过300Hz。解调信号的输出必须通过单一端口,以便于示波器检测。 这个竞赛题目要求参赛队伍设计一个能够识别多种调制方式、准确估计参数并解调信号的电子装置,涵盖从模拟调制到数字调制的各种技术,同时强调了精度和实用性。这不仅考验了参赛者的理论知识,还锻炼了他们的实践能力和创新思维。
2025-04-16 15:32:05 399KB
1
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-04-07 09:14:38 4.93MB matlab
1
基于MATLAB的自适应容积卡尔曼滤波(ACKF_Q)源代码:优化状态协方差Q的估计误差降低技术,【ACKF_Q】基于MATLAB的自适应ckf(容积卡尔曼滤波)源代码,通过自适应状态协方差Q来实现,得到了比传统方法更低的估计误差。 适用于Q无法获取、估计不准、变化不定的情况。 只有一个m文件,方便运行,包运行成功 ,基于MATLAB; 自适应ckf; 容积卡尔曼滤波; 自适应状态协方差Q; 估计误差; 无法获取Q; 估计不准确; 变化不定的Q情况; m文件实现。,自适应容积卡尔曼滤波(ACKF)源码:误差更低,状态协方差Q自适应调整
2025-03-30 14:35:36 229KB 柔性数组
1
二手车价格预测 :racing_car: :sport_utility_vehicle: :fuel_pump: 一个基于 ML 的 Web 应用程序,可帮助预测二手商品的售价 :automobile: :sport_utility_vehicle: 提供实时 Web 应用程序 数据集 您可以在找到数据集 安装: 只需执行命令: pip install -r requirements.txt即可安装必要的依赖项。 用法: 将此存储库克隆到一个目录并导航到该目录。 运行命令: python app.py 这将在本地主机上运行 web 应用程序,看起来像这样。 随意使用代码,添加更多功能,美化它。 :winking_face: 运行 Dockerized 应用程序 确保在您的操作系统 (Windows/Mac/Linux) 中安装并设置了 Docker。 有关详细说明,请参阅 导航到您克隆此存储库的文件夹(存在Dockerfile 的位置)。 构建 Docker 镜像(不要忘记点!! :grinning_face_with_smiling_eyes: ):
2025-03-26 23:55:08 3.17MB docker flask webapp HTML
1
仿真内容具体看本人的《基于分数傅里叶变换的chirp信号参数估计》文章。 主要仿真了单分量情况chirp信号参数估计问题、多分量情况chirp信号参数估计问题、强弱分量同时存在情况下chirp信号参数估计问题以及含有噪声情况下chirp信号参数估计问题。 可用于初学者对分数阶傅里叶变换的学习,也可基于本代码将分数阶傅里叶变换应用于相关工程领域,如基于分数域变换提取信号的分数域特征用于机器学习等。
2025-02-01 21:36:23 6KB 信号处理 分数阶傅里叶变换
1