一种基于GA的模糊C均值算法,用IRIS数据验证后聚类效果很好。
2021-10-14 21:19:02 4KB 遗传进化 FCM算法
1
设计了一种新的求解均匀分布的Pareto最优解集的多目标进化算法(MOEA),其主要的特点是使用了一种新的个体适应值的计算方式,方法是通过群体中某一个体与群体的最优非劣解集的最小距离来刻画个体的适应值的。算法还结合了遗传算法中的精英策略以及NSGA-Ⅱ中的拥挤距离[12],提高了非劣解向Pareto最优前沿收敛的速度,并且保证了Pareto最优解集的多样性。仿真结果表明,算法不仅能够获得分布良好的Pareto最优前沿,而且能够极大地简化计算,减少了算法的运行时间,其计算复杂度为ο(mn2)(m表示的是目标函数的个数,n是种群的规模)。
1
///// pymoo:Python中的多目标优化 我们的开源框架pymoo提供最先进的单目标和多目标算法,以及与多目标优化有关的更多功能,例如可视化和决策制定。 安装 首先,请确保您已安装Python 3环境。 我们建议使用miniconda3或anaconda3。 官方版本始终在PyPi上可用: pip install -U pymoo 对于当前的开发人员版本: git clone https://github.com/msu-coinlab/pymoo cd pymoo pip install . 由于为了加快速度,还可以编译某些模块,因此您可以仔细检查编译是否有效。 执行命令时,请确保不在本地pymoo目录中,因为否则将不使用站点包中已安装的版本。 python -c " from pymoo.util.function_loader import is_compile
1
数据人进化宝典,共813页。内容包含数据分析、数据仓库、数据架构、数据治理等等。
2021-10-14 18:05:32 19.33MB 数据分析 数据仓库 数据架构 数据治理
内含差分进化算法的五种变异策略
无车承运人信息安全进化.pdf
2021-10-14 16:03:36 1.82MB 解决方案
在求解多目标优化问题时,针对粒子群优化算法容易陷入局部极值的现象,提出了一种组合粒子群和差分进化的多目标优化算法,使用粒子群优化算法和差分进化算法共同产生新粒子,通过一个判断因子控制两种算法的使用比例,并对粒子群优化算法的速度更新公式进行了改变,以提高搜索效率。通过三个测试函数进行了仿真,并同NSGA-Ⅱ、MOPSO-CD进行了比较。实验结果表明改进算法求得的Pareto解集收敛性和多样性好,并且算法稳定性高,运行速度快。
2021-10-13 20:41:29 392KB 多目标优化; 粒子群优化; 差分进化
1
很好的进化计算课件,适合入门研究者,包括进化算法,遗传算法
2021-10-13 10:52:47 1.52MB 进化计算课件
1
matlab中存档算法代码TriMOEA-TA&R 刘益平版权所有 这些是TriMoEA-TA&R,MMMOP1-6和IGDM的代码,该代码在“刘元平,Gary G. Yen和Gongwei Gong提出,一种使用双归档和复合策略的多模态多目标进化算法”,IEEE Transactions进化计算,2019,23(4),pp.660-674“。 这些代码使用PlatEMOv1.6,该版本发布于“ PlatEMO叶田:进化多目标优化的MATLAB平台[教育论坛],IEEE计算智能杂志,2017年,第12页第4期:“叶天,程然,张兴义和张耀初。 73-87英寸。 请将所有代码放入PlatEMO的主文件夹中。 然后享受。 请注意,由于Pareto最佳集未保存在通过算法获得的.mat文件中,因此PlatEMO无法计算IGDM。 CalculateIGDM.m中提供了有关如何计算IGDM的示例。 。\ PFPS中提供了MMMOP1-6的帕累托最优前沿和帕累托最优集合的数据。 还包括在“蔡同悦,曲博扬和景亮,使用环形拓扑解决多模态多目标问题的多目标粒子群优化器,IEEE进化计算交易,2017年和早
2021-10-13 09:56:01 3.81MB 系统开源
1
简单扼要的介绍了进化算法与全局优化的关系,讲解了EAs、GAs、PSO等算法
2021-10-12 13:45:17 1.8MB 遗传算法 全局优化
1