### AS400程序员培训手册(中级)知识点详解 #### 一、程序代码行的编写 **2.1 最简单的RPGLE程序** RPGLE(RPG IV Enhanced)是一种高级编程语言,专为IBM i系列(原AS/400)设计。最简单的RPGLE程序通常包括基础的程序结构,例如程序头、主程序部分和结束语句。程序头包含了程序的基本信息,如程序名、程序类型等;主程序部分则是实际的业务逻辑所在。 **2.2 举例准备** 为了更好地理解RPGLE程序的编写过程,本章节提供了一些示例程序。这些示例涵盖了基本的编程概念,如变量声明、条件判断、循环控制等。通过这些示例,初学者可以快速掌握RPGLE的基础语法。 **2.3 简单的程序流程** 本节介绍了如何构建一个简单的程序流程。在RPGLE中,程序流程通常由一系列的指令组成,这些指令按照预定的顺序执行。了解基本的流程控制语句(如IF、DO等)对于编写高效的程序至关重要。 **2.4 常见的程序流程** 这里列举了一些常见的程序流程结构,如分支结构(IF-THEN-ELSE)、循环结构(DO-WHILE/DO-UNTIL)等。这些结构是构成复杂应用程序的基础。 **2.5 F行说明** - **2.5.1 内容说明**:F行主要用于定义文件,包括输入文件和输出文件。它指定了文件的名称、文件类型、文件结构等信息。 - **2.5.2 常用例子**:提供了具体的F行示例,帮助读者理解如何正确地定义文件。 - **2.5.3 补充说明**:补充了F行的一些特殊用途,如定义临时文件或特定类型的文件。 **2.6 D行说明** - **2.6.1 内容说明**:D行用于定义变量,包括局部变量和全局变量。通过D行可以指定变量的数据类型、长度等属性。 - **2.6.2 常用例子**:给出了一些D行的实例,展示了如何定义不同类型和长度的变量。 - **2.6.3 补充说明**:进一步解释了D行的高级用法,如如何定义复杂的变量类型。 **2.7 入口参数** 入口参数是指程序在被调用时需要传递的参数。这部分内容详细介绍了如何在RPGLE程序中定义和使用入口参数。 **2.8 C行说明** - **2.8.1 写在前面**:介绍了C行的基本概念及其在程序中的作用。 - **2.8.2 内容说明**:C行用于执行计算或数据转换等操作。详细说明了C行的基本语法和使用场景。 - **2.8.3 ILE操作码分类**:将C行的操作码按照字母顺序进行了分类介绍。 - **2.8.4 ILE操作码**:逐一讲解了各个操作码的功能和使用方法。 #### 二、和程序相关的数据库知识 **3.1 LF(逻辑文件)** - **3.1.1 逻辑文件概念**:逻辑文件是AS/400中用于访问物理文件的一种方式。它为物理文件提供了一个抽象层,使得应用程序可以通过逻辑文件来访问物理文件。 - **3.1.2 逻辑文件对效率的影响**:通过合理的逻辑文件设计可以显著提高数据访问的速度和效率。 **3.2 MEMBER** MEMBER是指数据库文件中的记录集合。这部分内容介绍了如何管理和使用MEMBER。 **3.3 游标** - **3.3.1 游标的概念**:游标是在数据库查询结果集中逐行移动的一种机制。游标允许应用程序一次处理一条记录。 - **3.3.2 不同操作码对应的游标的处理**:详细说明了不同的操作码如何与游标交互。 - **3.3.3 “有且仅有”的游标**:解释了在某些情况下必须使用游标的场景。 - **3.3.4 LOVAL、HIVAL对应的游标操作**:阐述了如何在特定条件下使用游标。 **3.4 事务处理--COMMIT** - **3.4.1 概念描述**:事务是一组操作的集合,它们作为一个整体被提交或回滚。 - **3.4.2 使用方法**:说明了如何在RPGLE程序中使用COMMIT命令来管理事务。 - **3.4.3 注意事项**:列举了一些在使用事务处理时需要注意的事项。 **3.5 关于锁表的问题LCKW** 这部分内容介绍了在RPGLE程序中如何处理锁表问题,特别是LCKW(Lock Workstation)操作码的使用。 #### 三、DEBUG调试以及常见出错信息 **4.1 写在前面** 这部分内容强调了调试的重要性,并简要介绍了调试的基本概念。 **4.2 常规用法** - **4.2.1 程序编译**:概述了程序编译的过程和步骤。 - **4.2.2 执行DEBUG命令**:介绍了如何使用DEBUG命令进入调试模式。 - **4.2.3 运行程序**:解释了如何在调试模式下运行程序。 - **4.2.4 在DEBUG模式中进行调试**:给出了具体的调试技巧和方法。 - **4.2.5 跟踪被当前程序调用的程序**:讲解了如何跟踪子程序的执行情况。 - **4.2.6 一定要退出DEBUG模式**:强调了完成调试后退出调试模式的重要性。 - **4.2.7 补充**:补充了一些额外的调试技巧。 **4.3 跟踪批处理程序** 这部分内容专门针对批处理程序的调试方法进行了介绍。 **4.4 常见的出错信息** - **4.4.1 编译程序时的出错信息**:列举了一些常见的编译错误,并提供了相应的解决方案。 - **4.4.2 运行时的出错信息**:详细说明了运行时可能出现的错误类型及处理方法。 #### 四、CL、CMD **5.1 CL程序** - **5.1.1 基本认识**:CL是Command Language的缩写,是一种用于编写系统命令和脚本的语言。 - **5.1.2 CL程序的常用语法及命令**:介绍了CL语言的基本语法和常用的命令。 - **5.1.3 不常用的语法**:列举了一些不太常用的CL语法。 **5.2 CMD** CMD是指在AS/400系统中执行的各种命令。这部分内容介绍了CMD的基本概念及其使用方法。 #### 五、屏幕文件及使用 这部分内容涉及了如何在RPGLE程序中创建和使用屏幕文件,以便与用户进行交互。 #### 六、实用技巧 **7.1 数组** - **7.1.1 简述**:介绍了数组的基本概念。 - **7.1.2 定义**:说明了如何定义数组。 - **7.1.3 初始化**:解释了如何初始化数组。 - **7.1.4 使用方法**:给出了使用数组的具体方法。 - **7.1.5 补充**:补充了一些关于数组使用的注意事项。 **7.2 结构体** - **7.2.1 简述**:介绍了结构体的基本概念。 - **7.2.2 结构体的定义**:说明了如何定义结构体。 - **7.2.3 初始化**:解释了如何初始化结构体。 - **7.2.4 使用方法**:给出了使用结构体的具体方法。 - **7.2.5 结构体中的数组**:说明了如何在结构体中嵌套数组。 - **7.2.6 定义时,独立变量与结构体变量的区别**:比较了独立变量和结构体变量之间的差异。 - **7.2.7 不带OCCURS关键字的结构体定义**:解释了如何在没有使用OCCURS关键字的情况下定义结构体。 **7.3 按内部序号来读文件** 这部分内容详细介绍了如何使用内部序号来读取文件。 **7.4 常驻内存命令SETOBJACC** - **7.4.1 简述**:介绍了SETOBJACC命令的基本概念。 - **7.4.2 命令说明**:解释了SETOBJACC命令的具体含义。 - **7.4.3 使用说明**:给出了使用SETOBJACC命令的方法。 - **7.4.4 补充说明**:补充了一些关于SETOBJACC命令的注意事项。 **7.5 数据队列的使用** - **7.5.1 数据队列的说明**:介绍了数据队列的基本概念。 - **7.5.2 CRTDTAQ建立数据队列**:说明了如何创建数据队列。 - **7.5.3 DLTDTAQ删除数据队列**:解释了如何删除数据队列。 - **7.5.4 系统API** - **7.5.4.1 QSNDDTAQ发送数据队列**:说明了如何使用QSNDDTAQ API发送数据到队列。 - **7.5.4.2 QRCVDTAQ接收数据队列**:解释了如何使用QRCVDTAQ API从队列中接收数据。 - **7.5.4.3 QCLRDTAQ清除数据队列**:说明了如何使用QCLRDTAQ API清空队列。 - **7.5.4.4 QMHQRDQD检索数据队列**:解释了如何使用QMHQRDQD API检索队列中的数据。 **7.6 使用系统API的入手方法** - **7.6.1 调用说明**:介绍了如何调用系统API。 - **7.6.2 关于USRSPACE**:解释了USRSPACE在API调用中的作用。 - **7.6.3 一些可能常用的API**:列举了一些常用的系统API。 #### 七、其它 **8.1 报表打印** 这部分内容涉及了如何在RPGLE程序中生成和打印报表。 **8.2 SQLRPGLE** 这部分内容介绍了如何在RPGLE程序中使用SQL语句。 **8.3 SAVF,备份与恢复** 这部分内容介绍了如何使用SAVF命令进行备份和恢复操作。 **8.4 菜单--MENU** 这部分内容介绍了如何在AS/400系统中创建和使用菜单。 **8.5 实用命令** 这部分内容列举了一些实用的AS/400命令,以供参考。 **8.6 关于代码风格的几点想法** 这部分内容分享了一些关于编写高质量RPGLE代码的建议。
2024-07-31 10:43:13 590KB AS400
1
在电子设计领域,Adafruit-GFX是一个广泛应用的图形库,尤其在嵌入式系统和物联网设备上,用于在各种显示屏上进行图形绘制和文本显示。本教程将详细讲解如何使用Adafruit-GFX库来显示中文字符,以及如何处理字体库以支持中文显示。 Adafruit-GFX库是一个轻量级的图形库,它提供了基本的绘图函数,如点、线、矩形、椭圆等,同时也支持文本输出。这个库是为各种不同分辨率和颜色深度的显示屏设计的,因此对于那些需要在嵌入式平台上开发图形用户界面的开发者来说,它是必不可少的工具。 在Adafruit-GFX中,显示中文字符需要特定的字体库,因为默认的库通常只包含ASCII字符集。"Adafruit-GFX显示中文字体库程序包"就是为了解决这个问题,它提供了扩展字体库,使我们能够在中国简体或繁体汉字环境下进行有效的文本渲染。 要使用这个程序包,我们需要完成以下步骤: 1. **安装字体转换工具**:压缩包中的`fontconvert`是一个字体转换工具,用于将TrueType字体转换为Adafruit-GFX库可以识别的格式。你需要先将其解压并编译(如果是一个源代码包)。 2. **选择字体**:从你的系统中挑选一个包含中文字符的TrueType字体,例如宋体、黑体或仿宋等。确保该字体文件包含了你所需要的所有中文字符。 3. **转换字体**:运行`fontconvert`,提供你的TrueType字体文件和所需的输出文件名。这个工具会生成一系列的C语言源代码文件和数据文件,这些文件包含了字体的点阵信息。 4. **集成到项目**:将生成的C代码文件添加到你的项目中,并在初始化阶段调用相应的函数加载字体库。这样,Adafruit-GFX库就能识别并渲染中文字符了。 5. **设置文本属性**:在代码中,通过设置Adafruit_GFX对象的`setTextSize()`、`setTextColor()`和`setFont()`等方法,可以调整文本的大小、颜色和使用的字体。 6. **显示文本**:使用`print()`或`println()`函数就可以在屏幕上输出中文字符了。记得在输出之前,确保屏幕的坐标系统和文本对齐方式已经设置正确。 需要注意的是,由于中文字符数量庞大,转换后的字体库可能会占用相当大的存储空间。因此,在资源有限的嵌入式设备上,可能需要考虑使用更小的字体或者对字符集进行裁剪,以适应硬件限制。 此外,如果你的设备使用的是彩色显示屏,你还需要处理颜色设置。Adafruit-GFX库允许你指定文本颜色和背景颜色,从而实现各种视觉效果。 通过这个“Adafruit-GFX显示中文字体库程序包”,开发者可以轻松地在Adafruit-GFX支持的显示屏上显示中文,为你的项目增添多语言支持。只要遵循上述步骤并适当调整,你就能在各种基于Adafruit-GFX的项目中实现美观且功能强大的中文显示功能。
2024-07-30 22:26:47 10.78MB 课程资源
1
食用说明 1、先运行Redis目录下的redis-server.exe 2、然后返回运行WeChat.exe 3、运行后出现http://:12221字样说明成功了,浏览器访问http://127.0.0.1:12221/即可食用!
2024-07-30 17:09:58 34.83MB 微信
1
《X9C103程序范例:C语言实现数控电位器的精确电阻步进调节》 在电子工程领域,X9C103是一款常见的数字电位器芯片,常用于实现对电阻值的精确控制。这篇文档将深入探讨如何使用C语言编程来驱动X9C103,实现电阻的步进调节功能,从而达到精准控制电路参数的目的。 我们需要了解X9C103的基本结构和工作原理。X9C103是一款数字模拟转换器(DAC),它通过数字输入控制模拟输出,模拟输出即为可调节的电阻值。该芯片通常具有多个地址线和数据线,通过编程可以设置不同的电阻值,步进精度高,适用于各种需要精细调整电阻的场合。 在C语言编程中,与X9C103交互的关键在于理解其寄存器操作。`X9C103.H`文件是包含X9C103相关的头文件,里面定义了芯片的寄存器结构和相应的函数接口。通常,这个文件会定义I/O端口的初始化、数据写入等基本操作。例如,可能会有如下代码片段: ```c #define X9C103_DATA_PORT PORTx // 替换x为实际的端口号 #define X9C103_DATA_DDR DDRx // 替换x为实际的端口号 #define X9C103_ADDR_PORT PORTy // 替换y为实际的地址端口号 #define X9C103_ADDR_DDR DDry // 替换y为实际的地址端口号 void x9c103_write(unsigned char address, unsigned char data) { // 这里会包含写入地址和数据到X9C103的逻辑 } ``` 在实际应用中,你需要根据具体的硬件连接情况,配置对应的I/O端口,并通过`x9c103_write`这样的函数来设定电阻值。电阻步进调节的过程就是通过改变写入的数字值来改变模拟输出,进而改变电阻值。 `www.pudn.com.txt`文件可能是从网上下载资料的来源记录,通常不直接涉及编程内容,但可能提供了更多关于X9C103芯片的资料链接或使用教程,对于深入理解和应用X9C103有一定的参考价值。 为了实现电阻步进调节,我们需要编写一个循环或者根据用户输入来控制X9C103的设置。例如,你可以创建一个函数,接受期望的电阻值作为参数,然后计算出对应的数字编码并写入到X9C103: ```c void set_resistance(unsigned int resistance) { // 假设X9C103的最大电阻为Rmax,最小电阻为Rmin,步进大小为Step // 计算对应电阻的数字编码 unsigned char code = (resistance - Rmin) / Step; x9c103_write(ADDRESS, code); // 写入地址和数据,ADDRESS为X9C103的地址线编码 } ``` 以上代码只是一个简单的示例,实际应用中可能需要考虑到分辨率、溢出检查以及错误处理等因素。在设计系统时,还需要考虑电源管理、抗干扰措施以及实时性能等多方面因素。 通过理解和应用C语言编程,结合X9C103的特性,我们可以实现一个高效的数控电位器系统,实现电阻值的精确步进调节。这不仅适用于实验室环境,也能在工业控制、音频设备等多种场景下发挥重要作用。
2024-07-30 13:48:58 1KB x9c103 程序范例
1
【微信小程序】是一种轻量级的应用开发平台,由腾讯公司推出,主要运行在微信环境中,无需下载安装即可使用的应用程序。它的出现使得开发者可以快速构建应用,用户也能方便地获取服务。微信小程序支持丰富的功能,包括但不限于地图、支付、推送通知等,广泛应用于电商、生活服务、社交、娱乐等多个领域。 在本压缩包"柚子洗车小程序 yzxc_sun 1.1.6.zip"中,包含的是一个微信小程序的源码模板,名为"yzxc_sun",版本为1.1.6。这个模板可能是一个专门为汽车洗车服务定制的小程序,旨在帮助商家或个人快速搭建在线预约洗车的服务平台。用户通过小程序可以方便地查看服务详情、预约时间、支付费用,而商家则可以通过后台管理系统管理订单、客户信息以及服务提供。 【源码】是软件开发的基础,它是由程序员用特定编程语言编写的代码,可直接被计算机执行。在这个案例中,源码是用于构建柚子洗车小程序的原始代码,开发者可以通过阅读和修改这些代码来定制化自己的小程序,例如调整界面设计、增加功能模块或者优化用户体验。 源码结构通常包含以下几个关键部分: 1. **wxml**:微信小程序的结构文件,类似于HTML,用于定义页面的结构和组件布局。 2. **wxss**:样式文件,类似于CSS,用于控制页面的样式和布局。 3. **js**:JavaScript文件,负责处理逻辑和数据,与后端接口交互,实现页面动态功能。 4. **json**:配置文件,定义页面的配置信息,如导航栏样式、网络请求域名等。 5. **图片资源**:包括图标、背景图等,用于美化界面。 6. **API调用**:微信小程序提供了丰富的API,如微信登录、支付、地理位置、推送通知等,开发者可以通过调用这些API来实现特定功能。 7. **页面路由**:用于页面之间的跳转,实现小程序内的导航。 8. **生命周期函数**:每个小程序页面都有其特定的生命周期,开发者需要在相应函数中编写代码以响应页面状态的变化。 柚子洗车小程序的源码可能会包含以上所述的各个部分,并且针对汽车洗车业务进行了特定的设计和优化。对于想要学习微信小程序开发或者想要快速搭建洗车服务小程序的开发者来说,这是一个非常有价值的参考资源。通过对源码的学习和实践,开发者不仅可以了解小程序的开发流程,还可以掌握如何将业务逻辑与小程序特性相结合,以创建符合用户需求的高效应用。
2024-07-30 12:20:12 4.86MB 微信小程序 源码
1
在本项目"google-map-api-spring-boot"中,开发者利用Google Maps API与Spring Boot框架集成,构建了一个能够保存和检索地理位置信息的应用程序。这个应用程序旨在为用户提供一个方便的方式来管理和查找地图上的位置数据,可能适用于诸如导航、地理标记、位置记录等场景。 让我们深入了解一下Google Maps API。Google Maps API是Google提供的一套Web服务,允许开发人员在自己的网站或应用中嵌入地图、获取方向、获取地理位置信息等功能。它提供了多种接口,如静态地图API、动态地图API、地理编码API、距离矩阵API等,覆盖了地图展示、定位、路径规划等多个方面。 Spring Boot则是一个基于Java的微服务框架,它简化了Spring应用程序的创建和运行过程。在这个项目中,Spring Boot被用来构建后端服务,处理HTTP请求,管理数据库操作,以及实现RESTful API,使得客户端可以通过简单的HTTP请求来存取地理位置数据。 接下来,我们关注HTML标签。虽然项目标签仅提到了HTML,但在实际应用中,HTML通常与CSS和JavaScript一起使用,构建用户界面。HTML用于结构化页面内容,CSS负责样式设计,而JavaScript则负责交互逻辑,比如地图的显示和操作。在本项目中,前端可能会使用HTML来创建地图容器,JavaScript来初始化Google Maps对象,加载地图,并实现与后端的交互,如发送位置数据请求和接收响应。 在项目文件"google-map-api-spring-boot-main"中,我们可以预期包含以下部分: 1. **配置文件**:如`application.properties`或`application.yml`,配置Spring Boot应用的环境变量,包括Google Maps API密钥。 2. **启动类**:定义Spring Boot应用的入口,可能包含了Spring Boot的自动配置和Spring MVC的设置。 3. **控制器(Controller)**:处理HTTP请求,如保存位置信息、检索位置信息的API接口。 4. **模型(Model)**:定义地理位置的数据结构,如`Location`类,包含经纬度坐标和其他相关信息。 5. **服务(Service)**:实现业务逻辑,如存储位置到数据库,查询位置数据。 6. **存储层(Repository)**:与数据库的交互,如JPA Repository接口,用于CRUD操作。 7. **前端资源**:HTML、CSS和JavaScript文件,构建用户界面并处理地图功能。 这个项目结合了Google Maps API的地理位置处理能力和Spring Boot的后端服务框架,通过HTML前端展示地图并交互,为用户提供了一种高效的位置管理解决方案。开发者可能还需要了解如OAuth 2.0授权机制,以安全地使用Google Maps API,以及数据库(如MySQL、PostgreSQL)的基本操作。对于希望学习如何将地图服务与后端系统集成的开发者来说,这是一个非常有价值的示例项目。
2024-07-30 11:52:41 74KB HTML
1
STM32采集声音/噪音传感器数据测试程序: 1、使用杜邦线连接声音传感器到开发板(声音传感器VCC连接开发板5V,声音传感器GND连接开发板GND,声音传感器OUT连接开发板PB6); 2、下载程序后,制造声音达到声音传感器有效分贝时,开发板上用户指示灯LD2(PB9引脚)亮;反之,开发板用户指示灯LD2灭。 3、代码使用KEIL开发,当前在STM32F103C8T6运行,如果是STM32F103其他型号芯片,依然适用,请自行更改KEIL芯片型号以及FLASH容量即可。 4、软、硬件技术服务:349014857@qq.com;
2024-07-30 10:57:55 4.69MB stm32 源码软件 arm
1
微信小程序请求拦截器 ,响应拦截器,结合微信小程序二次封装request 一起使用
2024-07-30 10:17:55 2KB 微信小程序
1
STM32H743是意法半导体(STMicroelectronics)推出的一款高性能微控制器,属于STM32H7系列,具备强大的ARM Cortex-M7内核。在这个项目中,我们将探讨如何利用STM32H743的串口(USART)功能,并通过DMA(直接存储器访问)进行数据传输。DMA允许在不占用CPU资源的情况下,实现外设与内存之间的高效数据交换。 串口(USART)是通用同步/异步收发传输器,常用于设备间的通信。在STM32H743上配置串口需要完成以下步骤: 1. **初始化配置**:设置波特率、数据位数、停止位和校验位。这些参数可根据通信协议和需求进行定制。 2. **中断或DMA选择**:这里采用DMA方式,因此需要开启串口的DMA请求,并配置合适的DMA通道。 3. **DMA配置**:创建DMA配置结构体,设定传输方向(发送或接收)、数据宽度、内存到外设或外设到内存模式等。 4. **MPU配置**:内存保护单元(MPU)可以保护内存区域免受非法访问。在使用DMA时,确保MPU配置允许DMA通道访问所需内存区域。 5. **缓存开启**:STM32H743支持数据和指令缓存,开启缓存能提高数据读取速度。配置缓存时,要确保与DMA的使用兼容。 6. **RAM分区**:根据应用需求,可能需要将RAM划分为多个区域,如堆栈、动态内存分配区等。 具体实现时,首先在初始化函数中配置串口和DMA。例如,使用HAL库的`HAL_UART_Init()`和`HAL_DMA_Init()`函数。接着,开启串口的DMA请求,这通常在`HAL_UART_MspInit()`回调中完成,调用`HAL_NVIC_EnableIRQ(DMA_IRQn)`来启用对应DMA通道的中断。 对于MPU配置,可以使用`HAL_MPU_ConfigRegion()`函数,设定访问权限和优先级。开启缓存可能涉及`SCB_EnableDCache()`和`SCB_EnableICache()`函数。分配RAM区域可通过`HAL_RCC_GetSRAMSize()`和`HAL_RCC_GetPCCARDRAMSize()`等函数获取总RAM大小,然后用`__attribute__((section(".mySection")))`这样的内存定位属性进行分配。 在数据传输过程中,启动发送或接收操作,例如通过`HAL_UART_Transmit_DMA()`或`HAL_UART_Receive_DMA()`。当传输完成时,DMA中断会被触发,此时需在中断服务程序中处理完传输状态,更新标志位或者执行其他必要的动作。 在H743_BSP_Validate这个文件包中,可能包含了验证这些功能的示例代码、配置文件以及必要的头文件。用户可以参考这些代码来理解和实现STM32H743的串口DMA驱动程序。为了确保程序正确运行,还需要注意系统时钟配置、异常处理以及串口和DMA的中断优先级设置。 STM32H743的串口DMA驱动涉及到硬件层的串口、DMA和MPU配置,以及软件层的中断处理和内存管理。正确理解并实施这些概念,能够构建高效、可靠的串口通信系统。
2024-07-29 19:35:57 7.16MB STM32H743 DMA USART 串口
1
微信小程序 --- wx.request网络请求封装
2024-07-29 16:40:22 7KB 微信小程序 网络
1