植物病害数据集,精心筛选常见植物,已做数据增强 包含26种常见植物,玉米,番茄,土豆、柑橘等等
2024-03-25 11:23:02 424.27MB 数据集
1
简单的歌曲建议系统 在我们的示例中使用的“百万首歌曲”数据集,其中使用“百万首歌曲”数据集创建了简单的歌曲推荐系统; 来自各种网站的歌曲的混合,用户在听完歌曲后给出的乐谱,包含数据集和数据集。 例如其内容: 合并两个数据集 在我们合并的数据集的内容中打印数据(行)和属性(列)的数量 显示数据集的内容 分离数据集作为训练和测试数据 创建不基于定制的基于受欢迎度的推荐类的示例 尝试使用基于相似度的建议类别示例来预测用户喜欢的歌曲列表 通过歌曲标题建议类似歌曲的示例 根据用户输入的歌曲给出建议的部分 资源利用 该示例的屏幕截图: 数据集内容中的数据(行)和属性(列)数: 数据集包含: 基于受欢迎程度的建议,无需定制: 基于相似度的建议: 根据歌曲名称建议相似的歌曲: 根据用户输入的歌曲的建议:
2024-03-25 09:51:11 139KB Python
1
AVEC2014数据集下载,AVEC 2014数据集是一个针对音频、视频和音视频情感分析的基准测试集,也涵盖了抑郁症的自动估计。该数据集包含一些任务特定的人机交互场景,被认为是非典型的自然行为反应,并且符合现实世界中可能会遇到的种类。数据集中的音频和视频数据都是通过Webcam和麦克风记录的,并为每个场景提供了有关主观情绪状态的注释。该数据集的目标是使参与者能够进行连续时间、连续值的情感识别,包括3D维度情感:价值、唤起和支配力,以及抑郁量表II上的自我报告。
2024-03-22 21:12:41 84B 数据集
1
本数据集专注于光伏电池板和太阳能电池板的缺陷检测,提供了各种类型缺陷的图像样本,这些缺陷在可见光下有划痕、雪覆盖、碎裂、鸟粪等,在红外光下有热斑以及二极管短路等。旨在帮助研究者开发更精确的缺陷检测算法,提高光伏电池板和太阳能电池板的性能和寿命。 数据集特点: 全面性:本数据集包含了各种类型的缺陷,覆盖了实际应用中可能遇到的各种情况。 多样性:数据集中的图像分别在可见光和红外光下采集,增加了缺陷检测的难度和挑战性。 真实性:所有图像均来源于真实场景,缺陷尺寸、形状、颜色等特性与实际情况相符。 标注完整:每个缺陷样本都有详细的标注信息,包括缺陷类型、位置、大小等,方便研究者进行训练和测试。 应用领域:本数据集适用于光伏电池板和太阳能电池板的缺陷检测算法研究和开发,也适用于计算机视觉和深度学习领域的相关研究。
2024-03-22 19:52:28 94B 数据集
1
吸烟(抽烟)检测和识别1:吸烟(抽烟)数据集说明(含下载链接):https://blog.csdn.net/guyuealian/article/details/130337263 吸烟(抽烟)检测和识别2:Pytorch实现吸烟(抽烟)检测和识别(含吸烟(抽烟)数据集和训练代码):https://blog.csdn.net/guyuealian/article/details/131521338
2024-03-21 17:31:24 181B Pytorch 吸烟识别 吸烟检测
1
python yolov5 训练数据集 无人机航拍数据集合 人工智能 深度学习 目标检测 目标识别
2024-03-21 14:47:47 313.82MB 人工智能 python 数据集 深度学习
1
共4000+数据集,已划分好训练验证测试集,YOLO格式,可直接训练
2024-03-21 14:43:46 119.17MB 数据集 YOLO 深度学习
1
上海市行政区划(乡镇级别)shp数据,到乡镇级别,带区划名称,WGS84经纬度坐标
2024-03-20 20:57:01 1.41MB 数据集
1
Book-Crossing数据集是网上的Book-Crossing图书社区的278,858个用户对271,379本书进行的评分,包括显式和隐式的评分。这些用户的年龄等人口统计学属性(demographic feature)都以匿名的形式保存并供分析。这个数据集是由Cai-Nicolas Ziegler使用爬虫程序在2004年从Book-Crossing图书社区上采集的,包含三个表。 ①用户信息数据(BX-Users.csv):用户信息数据展示了用户的基本信息,其数据格式为:"User-ID";"Location";"Age" ②书籍信息数据(BX-Books.csv):数据格式为:"ISBN";"Book-Title";"Book-Author";"Year-Of-Publication";"Publisher";"Image-URL-S";"Image-URL-M";"Image-URL-L" ③书籍评分数据(BX-Book-Ratings.csv) User-ID: 用户标识 ISBN: 书籍标识 Book-Rating: 书籍评分,评分如果是明确的,以1-10分表示。未评
2024-03-20 14:22:05 50.6MB 数据集 机器学习 推荐系统
1
RFM淘宝数据集
2024-03-19 20:37:29 10.2MB
1