海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-05-04 19:09:27 1.84MB matlab
1
内容概要:本文详细介绍了如何利用动态规划(Dynamic Programming, DP)在MATLAB/SIMULINK环境中实现自动驾驶车辆的动态避障功能。首先,文章解释了动态规划的核心思想及其在路径规划中的应用,特别是通过状态转移方程来解决避障问题。接着,讨论了运动学模型(如自行车模型)的建立方法,以及如何通过PID和MPC控制算法进行路径跟踪和避障。此外,文章还探讨了联合仿真平台(MATLAB + Carsim + Prescan)的搭建和配置,展示了如何将理论转化为实际的仿真效果。最后,提供了完整的代码实现和调试技巧,帮助读者快速上手并优化性能。 适合人群:对自动驾驶技术和路径规划感兴趣的科研人员、工程师和技术爱好者。 使用场景及目标:适用于研究和开发自动驾驶系统,特别是在复杂环境下实现高效的动态避障功能。目标是提高车辆的安全性和智能化水平,减少人为干预。 其他说明:文中提供的代码已在GitHub上开源,读者可以直接下载并运行。需要注意的是,某些高级功能(如深度强化学习)将在后续版本中继续探索。
2025-05-04 07:13:33 315KB
1
Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-05-03 14:16:25 3.46MB matlab
1
人工智能 基于MATLAB实现传统图像去噪算法(均值滤波、中值滤波、非局部均值滤波NLM、三维块匹配滤波BM3D)和基于深度卷积神经网络的DnCNN图像去噪算法。 五种算法都是对Set12数据集进行去噪,去噪的结果并没有保存,只是在运行过程中能看到去噪前和去噪后的图像对比,感兴趣的朋友可以自己将图像保存下来观察。 随着数字图像处理技术的迅猛发展,图像去噪成为了一个热门的研究领域。在众多图像去噪算法中,传统算法因其简单、直观、易于实现而得到广泛应用。然而,随着深度学习技术的兴起,基于深度卷积神经网络的去噪算法开始崭露头角,尤其在处理含有复杂噪声的图像时显示出更大的优势。本篇文章将深入探讨基于MATLAB实现的传统图像去噪算法以及基于深度卷积神经网络的DnCNN图像去噪算法,并在Set12数据集上进行对比实验。 传统图像去噪算法主要包括均值滤波、中值滤波、非局部均值滤波(NLM)以及三维块匹配滤波(BM3D)。这些算法各有其特点和应用场景。 均值滤波是一种简单有效的线性滤波器,它通过将图像中每个像素点的值替换为其邻域内像素点值的平均数来实现去噪。这种方法适用于去除高斯噪声,但会模糊图像细节,因为它是基于局部像素平均信息来进行去噪的。 中值滤波是一种非线性滤波技术,它将每个像素点的值替换为其邻域内像素点值的中位数。中值滤波在去除椒盐噪声方面效果显著,因为它不受个别噪声点的影响,但在处理含有大量细节的图像时可能会损失部分细节信息。 非局部均值滤波(NLM)是一种基于图像块相似性的去噪算法,它利用图像中的冗余信息,通过寻找图像中与当前处理块相似的其他块的加权平均来完成去噪。NLM算法在去除噪声的同时能较好地保持图像边缘和细节,但计算量较大,处理速度较慢。 三维块匹配滤波(BM3D)是一种先进的图像去噪算法,通过分组相似的图像块,利用三维变换去除噪声。BM3D算法通过两次协同过滤实现高效的图像去噪,其性能往往优于其他传统算法,尤其是在处理较为复杂的噪声时。 然而,传统图像去噪算法在处理含有大量噪声或需要高度去噪保留图像细节的场景时,往往效果有限。随着深度学习技术的出现,基于深度卷积神经网络的图像去噪算法成为研究的热点。深度学习算法能够从大量带噪声的图像中自动学习到有效的特征表示,并用于去噪任务。 在本篇文章中,作者实现了基于深度卷积神经网络的DnCNN图像去噪算法,并在Set12数据集上进行了测试。DnCNN是一种端到端的深度神经网络结构,它通过逐层学习图像中的噪声模式,可以有效地从带噪声的图像中去除噪声,同时保持图像的清晰度和边缘细节。DnCNN算法在处理高斯噪声、泊松噪声以及混合噪声等方面都表现出色,是目前图像去噪领域的一个重要突破。 Set12数据集包含了多种类型的带噪声图像,包括自然场景、动物、植物等,非常适合用于测试不同去噪算法的性能。在实验中,作者并未保存去噪后的结果,而是提供了运行过程中的去噪前和去噪后的图像对比,使得读者可以在实验中直观地观察到算法效果。 通过在Set12数据集上对五种算法进行测试,我们可以观察到不同算法对于不同类型噪声的处理能力。传统算法在去除简单噪声时效果尚可,但在细节保持和复杂噪声处理方面往往不尽人意。而基于深度学习的DnCNN算法在这些方面表现更为出色,即便是在噪声水平较高的情况下也能保持较高的图像质量。 传统图像去噪算法和基于深度卷积神经网络的DnCNN图像去噪算法各有千秋,前者简单易实现,后者性能卓越。在实际应用中,可以根据具体需求选择合适的去噪方法。随着深度学习技术的不断进步,未来一定会有更多高效、鲁棒的去噪算法被开发出来,以满足人们对于高质量图像的需求。
2025-05-03 12:02:37 79.92MB MATLAB 图像去噪 去噪算法 深度学习
1
本项目是自己做的设计,有GUI界面,完美运行,适合小白及有能力的同学进阶学习,大家可以下载使用,整体有非常高的借鉴价值,大家一起交流学习。该资源主要针对计算机、通信、人工智能、自动化等相关专业的学生、老师或从业者下载使用,亦可作为期末课程设计、课程大作业、毕业设计等。 项目整体具有较高的学习借鉴价值!基础能力强的可以在此基础上修改调整,以实现不同的功能。
2025-05-02 21:07:14 8.53MB matlab
1
内容概要:本文详细介绍了利用MATLAB中的NSGA-II算法联合Maxwell进行永磁电机的多目标优化过程。主要涉及五个设计变量(如磁钢厚度、槽口宽度等),并通过三个优化目标(齿槽转矩最小化、平均转矩最大化、转矩脉动最小化)来提升电机性能。文中展示了具体的代码实现,包括目标函数定义、NSGA-II算法参数设置以及Matlab与Maxwell之间的数据实时交互方法。此外,还探讨了电磁振动噪声仿真的重要性和具体实施步骤,强调了多物理场计算在电机优化中的作用。 适合人群:从事电机设计与优化的研究人员和技术工程师,尤其是对多目标优化算法和电磁仿真感兴趣的读者。 使用场景及目标:适用于需要提高永磁电机性能的工程项目,特别是希望通过多目标优化方法解决复杂设计问题的情况。目标是在满足多种性能指标的前提下找到最优设计方案,从而提升电机的整体性能。 其他说明:文章不仅提供了详细的理论解释和技术实现路径,还包括了许多实用技巧和注意事项,帮助读者更好地理解和应用这些技术和方法。
2025-05-02 14:19:35 285KB
1
阻抗导纳控制:基于Matlab Simulink的参数仿真与优化研究,阻抗导纳控制:基于Matlab Simulink的参数仿真与优化研究,阻抗控制 导纳控制 Matlab simulink 参数仿真 参数优化 可仿真不同的MBK参数值 ,阻抗控制; 导纳控制; Matlab simulink; 参数仿真; 参数优化; MBK参数值,"阻抗导纳控制:Matlab Simulink参数仿真与优化" 阻抗导纳控制是一种重要的机械系统和机器人控制系统中的技术,它涉及到阻抗控制和导纳控制两种控制策略。在Matlab Simulink环境下进行参数仿真与优化是这一研究领域的常见实践。通过仿真与优化,可以精确地模拟控制系统的动态行为,并对系统的性能进行评估和提升。 阻抗控制主要关注系统与环境之间的力学交互,它能够保证机械系统的运动与环境之间保持某种预定的关系,如阻抗控制使得机械臂能够根据外部环境的接触力来调整其位置和速度。而导纳控制则是阻抗控制的另一种形式,它通过调整机械系统的动态特性来响应外部输入的力,使得系统能够与外部环境形成某种预期的运动关系。 Matlab Simulink作为一个强大的仿真和建模工具,允许研究人员对控制系统的参数进行模拟和调整,进而优化系统的性能。在仿真过程中,可以对不同的参数组合进行测试,以便找到最佳的控制参数。例如,MBK参数值(Mass-Beam-Kirchhoff参数)是模拟弹性体的刚度和质量的重要参数,在阻抗导纳控制中尤为重要。 本文档集合中包含了多个关于阻抗控制与导纳控制的文件,这些文件涉及了该技术在机械系统和机器人自动化系统中的应用。其中,部分文档以.doc格式出现,包含了详细的文字描述和案例分析;而有的以.html格式存在,可能是网页形式的文档,适合在线阅读;还有.txt格式的文件,这种格式通常用于保存纯文本数据,可能是代码或者未格式化的数据;此外,还有图片文件,虽然文件名仅提供了“1.jpg”和“2.jpg”这样的信息,但它们可能是相关的图形说明或结果展示。 这些文件共同构成了一个完整的关于阻抗导纳控制技术的研究资源库,涵盖了从理论分析到实际应用的各个方面。通过对这些文件的研究,可以更好地理解阻抗导纳控制在现代机械系统和机器人自动化系统中的应用和优化方法,为相关领域提供重要的技术和理论支持。
2025-04-29 15:27:25 115KB
1
以下是一个基于 MATLAB 的语音增强降噪程序的简单描述: 该程序旨在通过对输入的语音信号进行处理,提高语音的清晰度和可听性,降低噪声的影响。它采用数字信号处理技术,通常包括以下主要功能: 1. 预处理:读取输入语音信号,进行采样率转换(如果需要),并对信号进行分帧处理。 2. 噪声估计:通过分析输入语音信号中的背景噪声部分,估计噪声的统计特性,例如噪声功率谱密度。 3. 特征提取:计算语音信号的特征参数,如短时能量、短时幅度谱等。 4. 噪声估计更新:利用特征提取的结果,动态更新噪声估计,以适应信号的变化。 5. 降噪滤波:根据噪声估计和语音信号的特征,设计合适的降噪滤波器,对信号进行滤波处理,以减少噪声的影响。 6. 后处理:将滤波后的语音信号进行合成,恢复其原始的采样率(如果进行了采样率转换),并输出最终的增强降噪结果。 需要注意的是,具体的算法和实现细节可能因程序的目标和应用领域而有所不同。此外,语音增强降噪算法属于一个复杂的研究领域,可能涉及更多的技术和算法,例如频谱减法、自适应滤波等。 以上只是对基于 MATLAB 的语音增强降噪程序功能的简要描述,具体
2025-04-29 09:58:55 14.21MB matlab
1
内容概要:本文探讨了一种基于MATLAB平台的双层优化电动汽车时空调度策略。针对风电接入电网后面临的时空双重调度挑战,提出了一个创新的双层优化模型。上层输电网络采用fmincon函数进行经济调度,优化火电、风电和电动车充电的成本;下层配电网则利用改进的粒子群算法处理空间维度的负荷分配,确保节点电压稳定和线路损耗最小化。文中详细介绍了目标函数设计、粒子群算法改进、风电不确定性和动态电价机制等方面的技术细节,并通过IEEE33节点系统进行了验证。 适合人群:从事电力系统优化、智能电网研究的专业人士,以及对MATLAB编程和优化算法感兴趣的科研人员。 使用场景及目标:适用于需要解决大规模电动汽车接入电网后引起的调度复杂性问题的研究机构和技术开发者。主要目标是提高电网运行效率,减少弃风现象,优化用户充电体验,降低总体运营成本。 其他说明:文章强调了配电网参数校核的重要性,并指出电动汽车可以成为电网的移动储能单元,在适当条件下能够帮助电网削峰填谷。此外,还讨论了动态电价机制对用户行为的影响,展示了如何通过合理的激励措施引导用户在合适的时间段充电。
2025-04-28 22:00:41 631KB
1