文章目录前言tensor1.创建tensor2. 基本属性3. 基本方法4. 运算5. GPU运算自动求导Autograd清空grad阻止autograd跟踪 前言 此为小弟pytorch的学习笔记,希望自己可以坚持下去。(2020/2/17) pytorch官方文档 pytorch中文教程 tensor tensor是pytorch的最基本数据类型,相当于numpy中的ndarray,并且属性和numpy相似,tensor可在GPU上进行运算。 tensor常见的基本属性: 1.创建tensor 通常此类方法都有以下属性,特别注意,区别numpy,一般这里的入口参数size都是数字序列,而
2022-12-16 16:51:38 279KB c OR pytorch
1
深度学习作业_基于resnet50和vgg16网络pytorch框架实现猫狗分类完整源码+代码注释+实验报告.zip 猫狗分类,使用Kaggle猫狗分类的原始数据集,实现模型最终的准确率达到75%及以上。本实验的目的: 为了进一步掌握使用深度学习框架进行图像分类任务的具体流程如:读取数据、构造网络、训练和测试模型 掌握经典卷积神经网络VGG16、ResNet50的基本结构
2022-12-16 15:26:22 6.26MB VGG16 resnet50 猫狗分类源码 pytorch框架
基于pytorch框架和yolov5实现第一人称射击(FPS)游戏的辅助瞄准系统源码+项目说明.zip ​ 本程序基于pytorch框架与yolov5物体检测平台,实现了人工智能对FPS(第一人称射击)游戏的辅助瞄准。与传统游戏作弊方式不同,本程序不读取或改动游戏的内存数据,而是通过人工智能实时分析游戏画面、确定敌人位置并移动鼠标射击,反应流程与人脑相同,难以被普通反作弊方式检测。本程序的特点有: 单次识别过程经过反复优化,在RTX30系显卡下单次时延$\leq 0.1s$​ 前后端分离,前端启动器UI界面现代化、扁平化,提供参数调节功能并与后端通过json参数共享 设计演示模式,实时展现AI的识别过程 设计静态和动态模式,在敌人静态和近匀速运动时有可观的射击精准度 适配多款射击游戏,对CS:GO(《反恐精英:全球攻势》)单独优化,考虑到鼠标加速与鼠标灵敏度设置对程序参数的影响
这个资源是用基于PyTorch的框架做的,用的是AlexNet的神经网络模型,做的是花朵分类识别与预测的案例。代码很详细,容易看懂。 数据集中包含5种类别的花朵。下载运行代码时,记得把数据集的压缩包解压下来,并且改一下代码中载入此数据集时相应的路径哦~
2022-12-16 11:25:50 430.54MB 深度学习
1
自导网络快速图像去噪 SGN的PyTorch实现以及给定噪声范围的估计PSNR 训练 我在Python 3.6和PyTorch 1.0环境上训练了此SGN。 培训策略与论文相同。 您可以使用以下脚本对自己的数据进行训练(请注意,您需要修改数据集路径): cd SGN python train.py or sh zyz.sh 测验 我使用ILSVRC2012验证集对4个NVIDIA TITAN Xp GPU进行了培训,并在1个TITAN Xp GPU上进行了测试。 详细信息显示在代码train.py 。 该演示来自SGN的ILSVRC2012验证集(mu = 0,sigma = 30,batchsize = 32、1000000次迭代)。 左:干净的图像(从COCO2014验证集中选择,COCO_val2014_000000264615.jpg) 中:加性高斯噪声+清晰图像 右
2022-12-15 22:52:09 2.47MB Python
1
本程序实现了在PyTorch中利用前馈神经网络实现复杂函数拟合。主要包括基于nn.Module的神经网络搭建和训练方法和数据集生成、分割方法。展示了通过调参分析和模型训练过程,评估各种超参数对训练过程、模型性能的影响,并将测试结果可视化。
1
本程序实现了在PyTorch中利用前馈神经网络实现复杂函数拟合。主要包括基于nn.Module的神经网络搭建和训练方法和数据集生成、分割方法。展示了通过调参分析和模型训练过程,评估各种超参数对训练过程、模型性能的影响,并将测试结果可视化。
2022-12-15 11:28:31 2KB pytorch bp 曲线拟合 多项式拟合
1
本程序实现了在PyTorch中利用前馈神经网络实现复杂函数拟合。主要包括基于nn.Module的神经网络搭建和训练方法和数据集生成、分割方法。展示了通过调参分析和模型训练过程,评估各种超参数对训练过程、模型性能的影响,并将测试结果可视化。
2022-12-15 11:28:31 2KB 深度学习 bp pytorch 曲线拟合
1
本程序实现了在PyTorch中利用前馈神经网络实现复杂函数拟合。主要包括基于nn.Module的神经网络搭建和训练方法和数据集生成、分割方法。展示了通过调参分析和模型训练过程,评估各种超参数对训练过程、模型性能的影响,并将测试结果可视化。
2022-12-15 11:28:30 3KB 深度学习 bp pytorch 曲线拟合
1
本程序实现了在PyTorch中利用前馈神经网络实现复杂函数拟合。主要包括基于nn.Module的神经网络搭建和训练方法和数据集生成、分割方法。展示了通过调参分析和模型训练过程,评估各种超参数对训练过程、模型性能的影响,并将测试结果可视化。
2022-12-15 11:28:29 1KB 深度学习 bp pytorch 曲线拟合
1