深度学习作业-基于resnet50和vgg16网络pytorch框架实现猫狗分类完整源码+代码注释+实验报告.zip

上传者: DeepLearning_ | 上传时间: 2022-12-16 15:26:22 | 文件大小: 6.26MB | 文件类型: ZIP
深度学习作业_基于resnet50和vgg16网络pytorch框架实现猫狗分类完整源码+代码注释+实验报告.zip 猫狗分类,使用Kaggle猫狗分类的原始数据集,实现模型最终的准确率达到75%及以上。本实验的目的: 为了进一步掌握使用深度学习框架进行图像分类任务的具体流程如:读取数据、构造网络、训练和测试模型 掌握经典卷积神经网络VGG16、ResNet50的基本结构

文件下载

资源详情

[{"title":"( 28 个子文件 6.26MB ) 深度学习作业-基于resnet50和vgg16网络pytorch框架实现猫狗分类完整源码+代码注释+实验报告.zip","children":[{"title":"深度学习作业_基于resnet50和vgg16网络pytorch框架实现猫狗分类完整源码+代码注释+实验报告","children":[{"title":"main.py <span style='color:#111;'> 8.06KB </span>","children":null,"spread":false},{"title":"实验报告.7z <span style='color:#111;'> 1.11MB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"__pycache__","children":[{"title":"__init__.cpython-37.pyc <span style='color:#111;'> 254B </span>","children":null,"spread":false},{"title":"CatDog.cpython-37.pyc <span style='color:#111;'> 2.04KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 143B </span>","children":null,"spread":false},{"title":"CatDog.py <span style='color:#111;'> 1.97KB </span>","children":null,"spread":false}],"spread":true},{"title":"assets","children":[{"title":"visualize","children":[{"title":"ResNet50_0605_01_12","children":[{"title":"Test","children":[{"title":"events.out.tfevents.1622854393.LAPTOP-2N3BREN3 <span style='color:#111;'> 34.94KB </span>","children":null,"spread":false}],"spread":true},{"title":"Train","children":[{"title":"events.out.tfevents.1622826759.LAPTOP-2N3BREN3 <span style='color:#111;'> 5.33MB </span>","children":null,"spread":false}],"spread":true},{"title":"Validate","children":[{"title":"events.out.tfevents.1622826759.LAPTOP-2N3BREN3 <span style='color:#111;'> 9.21KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"VGG16_0605_11_52","children":[{"title":"Test","children":[{"title":"events.out.tfevents.1622865125.LAPTOP-2N3BREN3 <span style='color:#111;'> 34.94KB </span>","children":null,"spread":false}],"spread":true},{"title":"Train","children":[{"title":"events.out.tfevents.1622865125.LAPTOP-2N3BREN3 <span style='color:#111;'> 10.68MB </span>","children":null,"spread":false}],"spread":true},{"title":"Validate","children":[{"title":"events.out.tfevents.1622865125.LAPTOP-2N3BREN3 <span style='color:#111;'> 18.54KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"VGG16_pretrained_0606_09_22","children":[{"title":"Test","children":[{"title":"events.out.tfevents.1622942562.LAPTOP-2N3BREN3 <span style='color:#111;'> 34.94KB </span>","children":null,"spread":false}],"spread":true},{"title":"Train","children":[{"title":"events.out.tfevents.1622942562.LAPTOP-2N3BREN3 <span style='color:#111;'> 268.34KB </span>","children":null,"spread":false}],"spread":true},{"title":"Validate","children":[{"title":"events.out.tfevents.1622942562.LAPTOP-2N3BREN3 <span style='color:#111;'> 506B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"ResNet50_pretrained_0605_09_11","children":[{"title":"Test","children":[{"title":"events.out.tfevents.1622855483.LAPTOP-2N3BREN3 <span style='color:#111;'> 34.94KB </span>","children":null,"spread":false}],"spread":true},{"title":"Train","children":[{"title":"events.out.tfevents.1622855483.LAPTOP-2N3BREN3 <span style='color:#111;'> 268.34KB </span>","children":null,"spread":false}],"spread":true},{"title":"Validate","children":[{"title":"events.out.tfevents.1622855483.LAPTOP-2N3BREN3 <span style='color:#111;'> 506B </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"model2.png <span style='color:#111;'> 98.21KB </span>","children":null,"spread":false},{"title":"model1.png <span style='color:#111;'> 6.70KB </span>","children":null,"spread":false}],"spread":true},{"title":"net","children":[{"title":"__pycache__","children":[{"title":"__init__.cpython-37.pyc <span style='color:#111;'> 330B </span>","children":null,"spread":false},{"title":"VGG16.cpython-37.pyc <span style='color:#111;'> 2.36KB </span>","children":null,"spread":false},{"title":"ResNet50.cpython-37.pyc <span style='color:#111;'> 2.75KB </span>","children":null,"spread":false},{"title":"BasicModule.cpython-37.pyc <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 235B </span>","children":null,"spread":false},{"title":"ResNet50.py <span style='color:#111;'> 2.99KB </span>","children":null,"spread":false},{"title":"VGG16.py <span style='color:#111;'> 2.19KB </span>","children":null,"spread":false},{"title":"BasicModule.py <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明