Pytorch框架Resnet_VGG两种网络实现人脸表情识别源码+训练好的模型+项目详细说明+PPT报告.zip 包含的网络有resnet网络,vgg网络,以及对应训练好的模型文件, 包含项目详细说明文档,可参考文档操作学习。 包含制作好的答辩PPT 该项目可以用来参考学习,适合深度学习初学者或者需要实践经验的工程师使用,也可以直接拿来作为毕设使用,请放心下载! 由于该项目使用的人脸识别数据集太大,无法一起上传,故使用的数据集 下载链接为:https://download.csdn.net/download/DeepLearning_/87325578
2022-12-22 09:27:00 335.27MB Resnet vgg cnn 人脸表情识别源码
基于pytorch的中国交通警察指挥手势识别项目源码+训练好的模型+数据集+项目操作说明.zip 识别8种中国交通警察指挥手势的Pytorch深度学习项目 带训练好的模型以及数据集 下载模型参数文件checkpoint和生成的骨架generated 放置在: ctpgr-pytorch/checkpoints ctpgr-pytorch/generated 下载交警手势数据集(必选) 交警手势数据集下载: 放置在: (用户文件夹)/PoliceGestureLong (用户文件夹)/AI_challenger_keypoint # 用户文件夹 在 Windows下是'C:\Users\(用户名)',在Linux下是 '/home/(用户名)' 安装Pytorch和其它依赖: # Python 3.8.5 conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch conda install ujson pip install visdom opencv-python imgaug
2022-12-22 09:26:58 4.42MB pytorch 深度学习 关键点检测 手势识别
每个像素都很重要:域自适应对象检测器的中心感知特征对齐 该项目托管用于实现“ (ECCV 2020)的代码。 介绍 域自适应对象检测器旨在使其自身适应可能包含对象外观,视点或背景变化的不可见域。大多数现有方法都在图像级别或实例级别采用特征对齐。但是,全局特征上的图像级别对齐可能会同时纠缠前景/背景像素,而使用提案的实例级别对齐可能会遭受背景噪声的困扰。 与现有解决方案不同,我们提出了一种域自适应框架,该框架通过预测逐像素的对象度和中心度来考虑每个像素。具体而言,所提出的方法通过更加关注前景像素来进行中心感知对齐,从而实现跨域更好的适应性。为了更好地跨域对齐要素,我们开发了一种中心感知的对齐方法,该方法可以进行对齐过程。 我们在众多的适应性设置上展示了我们的方法,并获得了广泛的实验结果,并针对现有的最新算法展示了良好的性能。 安装 检查以获取安装说明。 我们的无锚检测器的实现很大程度上基于F
1
Pytorch实现基于卷积神经网络的面部表情识别数据集(只含数据集).zipPytorch实现基于卷积神经网络的面部表情识别数据集(只含数据集).zipPytorch实现基于卷积神经网络的面部表情识别数据集(只含数据集).zipPytorch实现基于卷积神经网络的面部表情识别数据集(只含数据集).zipPytorch实现基于卷积神经网络的面部表情识别数据集(只含数据集).zipPytorch实现基于卷积神经网络的面部表情识别数据集(只含数据集).zipPytorch实现基于卷积神经网络的面部表情识别数据集(只含数据集).zipPytorch实现基于卷积神经网络的面部表情识别数据集(只含数据集).zipPytorch实现基于卷积神经网络的面部表情识别数据集(只含数据集).zipPytorch实现基于卷积神经网络的面部表情识别数据集(只含数据集).zipPytorch实现基于卷积神经网络的面部表情识别数据集(只含数据集).zipPytorch实现基于卷积神经网络的面部表情识别数据集(只含数据集).zipPytorch实现基于卷积神经网络的面部表情识别数据集(只含数据集).zipPytorc
2022-12-21 16:28:35 849.41MB 面部表情识别数据集 数据集
pytorch实现变分自编码器
2022-12-21 11:27:23 53.33MB 神经网络
1
跨模态检索指的是:根据一个模态的查询样本,在另一个模态上搜索相关的样本。 例如,给出一张图像,去检索包含相同对象或主题的文本描述;或是给出一段文本,去检索带有其描述对象的图片。 但由于各模态之间具有不同的数据表现形式,所以不同模态的样本间并不能直接进行相似性比较。 以Pascal Sentence数据集为实力,用pytorch写一个demo 文章链接:https://blog.csdn.net/zzpl139/article/details/128372023
1
graph-rcnn.pytorch 我们的ECCV 2018论文Pytorch代码 介绍 该项目是一组基于Pytorch 1.0的重新实现的代表性场景图生成模型,包括: 我们自己的 。 ECCV 2018。 Xu等人。 CVPR 2017 ,Li等。 ICCV 2017 ,Zellers等。 CVPR 2018 ,Zhang等,CVPR 2019 我们的重新实现基于以下存储库: 为什么我们需要这个存储库? 将所有这些代表性方法收集到一个回购中的目的是在相同设置下跨不同方法建立更公平的比较。 您可能会在最近的文献中注意到,IMP,MSDN,Graph R-CNN和神经母题的报告数量通常令人困惑,尤其是由于IMP样式方法(前三种)和神经母题风格的方法(神经母题)之间存在较大差距纸和其他基于它的变体) 。 我们希望该仓库可以为各种场景图生成方法建立良好的基准,并为研究界做出贡献
2022-12-19 19:53:03 666KB Python
1
使用pytorch搭建自编码器,实现图像的去噪
2022-12-19 12:27:23 26.36MB 深度学习
1
OpenNMT: 开源神经机器翻译系统OpenNMT的Pytorch一个移植 OpenNMT-py:开源神经机器翻译 这是 OpenNMT 的 Pytorch 端口,OpenNMT 是一个开源 (MIT) 神经机器翻译系统。 它旨在便于研究,在翻译、摘要、图像到文本、形态学和许多其他领域尝试新想法。 OpenNMT-py 作为一个协作开源项目运行。 它目前由 Sasha Rush(剑桥,马萨诸塞州)、Ben Peters(萨尔布吕肯)和 Janyu Zhan(深圳)维护。 原始代码由 Adam Lerer (NYC) 编写。 代码库接近稳定的 0.1 版本。 如果您想要稳定的代码,我们目前建议分叉。 我们喜欢贡献。 请查阅问题页面以获取任何“欢迎贡献”标记的帖子。 目录 要求 功能快速入门 高级引用要求 pip install -r requirements.txt 功能 实现了以下 OpenNMT 功能: 多层双向 RNN,具有注意力和丢失数据预处理从检查点保存和加载 带有批处理和波束搜索的推理(翻译) 上下文gate 多源和目标 RNN (lstm/gru) 类型
2022-12-18 19:47:42 77.91MB 机器学习
1
动作识别研究 该存储库包含用于动作识别的6种代表性2D和3D方法的一般实现,包括I3D [1],ResNet3D [2],S3D [3],R(2 + 1)D [4],TSN [5]和TAM [ 6]。 这些代码用于我们对动作识别的分析。 陈春福(Richard)Chen *,Rameswar Panda *,Kandan Ramakrishnan,Rogerio Feris,John Cohn,Aude Oliva和Fanquanfu *,“对基于CNN的时空表示进行动作识别的深入分析”。 *:均摊 如果您使用此仓库中的代码和模型,请引用我们的工作。 谢谢! @inproceedings{chen2020deep, title={Deep Analysis of CNN-based Spatio-temporal Representations for Action Recog
2022-12-17 17:17:25 64KB Python
1