这是总结的深度学习中常用的11个图数据集。
1. 近年来,深度学习越来越关注图方向的任务,通过利用图神经网络去挖掘现实中各种可以利用图来表示事物(社交网络,论文引用网络,分子结构)等等,来学习更好的表示,去实现下游任务。
2. 图数据是由一些点和一些线构成的,能表示一些实体之间的关系,图中的点就是实体,线就是实体间的关系。如下图,v就是顶点,e是边,u是整张图。attrinbutes(feature)是信息的意思,每个点、每条边、每个图都是有信息的。
3. 图数据集对于图任务的科研是必备的。深度学习中常用的图数据集:Cora、Citeseer(Cite)、Pubmed、DBLP、ACM、AMAP、AMAC、Corafull、WIKI、BAT、EAT、UAT。
1