lanenet-lane-detection:使用深度神经网络模型对车道网模型进行实时车道检测的非官方实现

上传者: 42155721 | 上传时间: 2023-04-05 10:16:05 | 文件大小: 48.22MB | 文件类型: ZIP
LaneNet车道检测 使用tensorflow主要基于IEEE IV会议论文“走向端到端的车道检测:实例分割方法”,实现用于实时车道检测的深度神经网络。有关详细信息,请参阅他们的论文 。 该模型由编码器-解码器阶段,二进制语义分割阶段和使用判别损失函数的实例语义分割组成,用于实时车道检测任务。 主要的网络架构如下: Network Architecture 安装 该软件仅在带有GTX-1070 GPU的ubuntu 16.04(x64),python3.5,cuda-9.0,cudnn-7.0上进行了测试。 要安装此软件,您需要tensorflow 1.12.0,并且尚未测试其他版本的tensorflow,但我认为它可以在版本1.12以上的tensorflow中正常工作。 其他必需的软件包,您可以通过以下方式安装它们 pip3 install -r requirements.txt

文件下载

资源详情

[{"title":"( 78 个子文件 48.22MB ) lanenet-lane-detection:使用深度神经网络模型对车道网模型进行实时车道检测的非官方实现","children":[{"title":"lanenet-lane-detection-master","children":[{"title":"lanenet_model","children":[{"title":"lanenet_postprocess.py <span style='color:#111;'> 14.17KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 241B </span>","children":null,"spread":false},{"title":"lanenet.py <span style='color:#111;'> 2.92KB </span>","children":null,"spread":false},{"title":"lanenet_back_end.py <span style='color:#111;'> 7.98KB </span>","children":null,"spread":false},{"title":"lanenet_discriminative_loss.py <span style='color:#111;'> 4.82KB </span>","children":null,"spread":false},{"title":"lanenet_front_end.py <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 180B </span>","children":null,"spread":false},{"title":"data","children":[{"title":"source_image","children":[{"title":"qr.jpg <span style='color:#111;'> 171.84KB </span>","children":null,"spread":false},{"title":"binary_seg_loss.png <span style='color:#111;'> 46.29KB </span>","children":null,"spread":false},{"title":"accuracy.png <span style='color:#111;'> 47.23KB </span>","children":null,"spread":false},{"title":"lanenet_instance_seg.png <span style='color:#111;'> 2.98KB </span>","children":null,"spread":false},{"title":"lanenet_mask_result.png <span style='color:#111;'> 1.34MB </span>","children":null,"spread":false},{"title":"instance_seg_loss.png <span style='color:#111;'> 44.63KB </span>","children":null,"spread":false},{"title":"total_loss.png <span style='color:#111;'> 42.84KB </span>","children":null,"spread":false},{"title":"lanenet_batch_test.gif <span style='color:#111;'> 38.79MB </span>","children":null,"spread":false},{"title":"lanenet_embedding.png <span style='color:#111;'> 628.42KB </span>","children":null,"spread":false},{"title":"lanenet_binary_seg.png <span style='color:#111;'> 2.38KB </span>","children":null,"spread":false},{"title":"network_architecture.png <span style='color:#111;'> 174.00KB </span>","children":null,"spread":false}],"spread":false},{"title":"tusimple_ipm_remap.yml <span style='color:#111;'> 14.02MB </span>","children":null,"spread":false},{"title":"tusimple_test_image","children":[{"title":"0.jpg <span style='color:#111;'> 256.09KB </span>","children":null,"spread":false},{"title":"3.jpg <span style='color:#111;'> 233.57KB </span>","children":null,"spread":false},{"title":"1.jpg <span style='color:#111;'> 202.60KB </span>","children":null,"spread":false},{"title":"2.jpg <span style='color:#111;'> 168.36KB </span>","children":null,"spread":false}],"spread":true},{"title":"training_data_example","children":[{"title":"gt_instance_image","children":[{"title":"0000.png <span style='color:#111;'> 7.42KB </span>","children":null,"spread":false},{"title":"0004.png <span style='color:#111;'> 7.14KB </span>","children":null,"spread":false},{"title":"0003.png <span style='color:#111;'> 8.03KB </span>","children":null,"spread":false},{"title":"0001.png <span style='color:#111;'> 7.47KB </span>","children":null,"spread":false},{"title":"0005.png <span style='color:#111;'> 7.20KB </span>","children":null,"spread":false},{"title":"0002.png <span style='color:#111;'> 8.45KB </span>","children":null,"spread":false}],"spread":true},{"title":"gt_binary_image","children":[{"title":"0000.png <span style='color:#111;'> 6.65KB </span>","children":null,"spread":false},{"title":"0004.png <span style='color:#111;'> 6.43KB </span>","children":null,"spread":false},{"title":"0003.png <span style='color:#111;'> 7.12KB </span>","children":null,"spread":false},{"title":"0001.png <span style='color:#111;'> 6.69KB </span>","children":null,"spread":false},{"title":"0005.png <span style='color:#111;'> 6.48KB </span>","children":null,"spread":false},{"title":"0002.png <span style='color:#111;'> 7.52KB </span>","children":null,"spread":false}],"spread":true},{"title":"image","children":[{"title":"0000.png <span style='color:#111;'> 1.06MB </span>","children":null,"spread":false},{"title":"0004.png <span style='color:#111;'> 1.11MB </span>","children":null,"spread":false},{"title":"0003.png <span style='color:#111;'> 1.14MB </span>","children":null,"spread":false},{"title":"0001.png <span style='color:#111;'> 1.08MB </span>","children":null,"spread":false},{"title":"0005.png <span style='color:#111;'> 1.04MB </span>","children":null,"spread":false},{"title":"0002.png <span style='color:#111;'> 1.15MB </span>","children":null,"spread":false}],"spread":true},{"title":"train.txt <span style='color:#111;'> 988B </span>","children":null,"spread":false},{"title":"val.txt <span style='color:#111;'> 493B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 11.07KB </span>","children":null,"spread":false},{"title":"_config.yml <span style='color:#111;'> 26B </span>","children":null,"spread":false},{"title":"local_utils","children":[{"title":"log_util","children":[{"title":"__init__.py <span style='color:#111;'> 247B </span>","children":null,"spread":false},{"title":"init_logger.py <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false}],"spread":true},{"title":"config_utils","children":[{"title":"__init__.py <span style='color:#111;'> 222B </span>","children":null,"spread":false},{"title":"parse_config_utils.py <span style='color:#111;'> 6.52KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"tools","children":[{"title":"make_tusimple_tfrecords.py <span style='color:#111;'> 703B </span>","children":null,"spread":false},{"title":"train_lanenet_tusimple.py <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"evaluate_model_utils.py <span style='color:#111;'> 2.47KB </span>","children":null,"spread":false},{"title":"generate_tusimple_dataset.py <span style='color:#111;'> 6.10KB </span>","children":null,"spread":false},{"title":"test_lanenet.py <span style='color:#111;'> 4.54KB </span>","children":null,"spread":false},{"title":"evaluate_lanenet_on_tusimple.py <span style='color:#111;'> 3.83KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 7.97KB </span>","children":null,"spread":false},{"title":"mnn_project","children":[{"title":"kdtree.h <span style='color:#111;'> 4.86KB </span>","children":null,"spread":false},{"title":"freeze_lanenet_model.py <span style='color:#111;'> 2.96KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 222B </span>","children":null,"spread":false},{"title":"lanenet_model.h <span style='color:#111;'> 5.79KB </span>","children":null,"spread":false},{"title":"lanenet_model.cpp <span style='color:#111;'> 14.87KB </span>","children":null,"spread":false},{"title":"dbscan.hpp <span style='color:#111;'> 11.01KB </span>","children":null,"spread":false},{"title":"config.ini <span style='color:#111;'> 309B </span>","children":null,"spread":false},{"title":"kdtree.cpp <span style='color:#111;'> 13.26KB </span>","children":null,"spread":false},{"title":"config_parser.cpp <span style='color:#111;'> 5.03KB </span>","children":null,"spread":false},{"title":"config_parser.h <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false},{"title":"convert_lanenet_model_into_mnn_model.sh <span style='color:#111;'> 228B </span>","children":null,"spread":false}],"spread":false},{"title":".idea","children":[{"title":"vcs.xml <span style='color:#111;'> 180B </span>","children":null,"spread":false}],"spread":true},{"title":"config","children":[{"title":"tusimple_lanenet.yaml <span style='color:#111;'> 2.68KB </span>","children":null,"spread":false}],"spread":true},{"title":"semantic_segmentation_zoo","children":[{"title":"cnn_basenet.py <span style='color:#111;'> 18.33KB </span>","children":null,"spread":false},{"title":"vgg16_based_fcn.py <span style='color:#111;'> 14.11KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 219B </span>","children":null,"spread":false},{"title":"bisenet_v2.py <span style='color:#111;'> 40.35KB </span>","children":null,"spread":false}],"spread":true},{"title":"trainner","children":[{"title":"tusimple_lanenet_multi_gpu_trainner.py <span style='color:#111;'> 26.77KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 225B </span>","children":null,"spread":false},{"title":"tusimple_lanenet_single_gpu_trainner.py <span style='color:#111;'> 15.30KB </span>","children":null,"spread":false}],"spread":true},{"title":"data_provider","children":[{"title":"tf_io_pipline_tools.py <span style='color:#111;'> 10.59KB </span>","children":null,"spread":false},{"title":"lanenet_data_feed_pipline.py <span style='color:#111;'> 12.97KB </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明