2024最新Python跨年烟花代码 附完整源码
2024-06-25 15:14:21 2KB python
1
Python项目中的AI聊天机器人 人工智能聊天机器人是一个用于大学查询的简单自动通信系统。在这里,用户必须将他们的查询作为输入,系统机器人根据问题进行回复。该系统可以起到非常方便、省时的作用,向查询者传递所需的院校信息 如何运行项目? 要运行此项目,您可以在 PC 上安装 Pycharm(用于代码执行)和 Anaconda(用于虚拟环境)
2024-06-25 14:50:39 158KB python 人工智能
1
Python机器学习金融风控信用评分卡模型源码+数据,信用评分卡模型-逻辑回归模型 完整代码包 data:数据文件 code:代码文件 notebook:基于notebook的实现
2024-06-25 14:19:04 10.53MB python 机器学习 逻辑回归
1
城市能源分析师(CEA) 是一个城市能源模拟平台,并且是用于设计低碳高效社区和地区的首批开源计算工具之一。CEA将城市规划知识和能源系统工程知识整合在一起框架。 这样就可以研究城市设计方案,建筑改造和能源基础设施计划的效果,取舍和协同作用。 单击获取安装手册和教程 点击报告问题 点击与我们联系 注意力! 我们将在2019年5月1日终止对ArcGIS界面的支持。这意味着不再有教程和关于如何使用此界面的建议。 您仍然需要自行承担使用此界面的风险。 我们邀请所有CEA用户熟悉CEA仪表板。 CEA仪表板是我们新的100%开源用户界面。 我们的目标是到2019年4月中旬创建有关如何使用此界面的第一个教程。 引用我们: 对于V3.10.0(稳定):
2024-06-25 11:38:38 94.77MB Python
1
基于python和贝叶斯的简单垃圾邮件分类源码(作业).zip
2024-06-25 10:35:03 17.32MB python 垃圾邮件分类
1
主要内容:通过实战基于YOLOv8的摔倒行为检测算法,从数据集制作到模型训练,最后设计成为检测UI界面
2024-06-24 20:16:20 28.07MB python
1
基于Python的DoIP诊断上位机
2024-06-24 17:54:28 163.68MB python
1
音乐GAN 塞缪尔·贝里恩(Samuel Berrien)
1
基于python的网络舆情分析系统源码数据库论文 标题解读: 该论文的标题“基于python的网络舆情分析系统源码数据库论文”表明该论文的主题是基于Python语言和MySQL数据库开发的网络舆情分析系统。该系统的目的是为社会的网络管理部门提供言论分析、言论管理、用户管理等多种功能,以便更好地管理和分析网络舆情。 描述解读: 该论文的描述部分没有明确的描述,但是根据论文的内容可以看出,该论文的目标是设计和实现一个基于Python语言和MySQL数据库的网络舆情分析系统。该系统旨在为社会的网络管理部门提供言论分析、言论管理、用户管理等多种功能,以便更好地管理和分析网络舆情。 标签解读: 该论文的标签包括“网络”、“网络舆情分析”、“Python”、“软件/插件”、“数据库”。这些标签表明该论文的主题是基于Python语言和MySQL数据库的网络舆情分析系统的设计和实现。 内容详解: 该论文的主要内容可以分为两个部分:第一部分是论文的引言和背景介绍,第二部分是系统的设计和实现。 在论文的引言部分,作者对计算机技术的发展和影响进行了介绍,并强调了网络舆情分析的重要性。 在系统的设计和实现部分,作者详细介绍了基于Python语言和MySQL数据库的网络舆情分析系统的设计和实现过程。该系统使用Python语言作为开发语言,MySQL数据库作为数据存储介质。该系统的主要功能包括言论分析、言论管理、用户管理等。 关键点总结: 基于Python语言和MySQL数据库的网络舆情分析系统的设计和实现。 该系统旨在为社会的网络管理部门提供言论分析、言论管理、用户管理等多种功能。 该系统使用Python语言作为开发语言,MySQL数据库作为数据存储介质。 知识点: 1. 网络舆情分析系统的设计和实现 2. 基于Python语言和MySQL数据库的开发 3. 言论分析、言论管理、用户管理等多种功能 4. 网络管理部门的需求和挑战 5. 计算机技术的发展和影响 该论文的主题是基于Python语言和MySQL数据库的网络舆情分析系统的设计和实现。该系统旨在为社会的网络管理部门提供言论分析、言论管理、用户管理等多种功能,以便更好地管理和分析网络舆情。
2024-06-24 16:48:47 1.73MB 网络 网络 python
1
文字分类 文本分类(文本分类)是自然语言处理中的一个重要应用技术,根据文档的内容或主题,自动识别文档所属的预先定义的类别标签。文本分类是很多应用场景的基础,某些垃圾邮件识别,舆情分析,情感识别,新闻自动分类,智能客服机器人的合并分类等等。此处分为两个部分: 第1部分:基于scikit学习机器学习的Python库,对比几个传统机器学习方法的文本分类 第2部分:基于预训练词向量模型,使用Keras工具进行文本分类,用到了CNN 本文语料:,密码:P9M4。更多新闻标注语料,。 预训练词向量模型来自,下载地址: 。 第1部分:基于scikit-learn机器学习的文本分类方法 基于scikit-
2024-06-24 14:49:13 208KB python nlp machine-learning deep-learning
1