Deep convolutional neural networks (CNNs) have been at the heart of spectacular advances in deep learning.
2022-04-24 11:15:32 858KB Caffe
1
【导读】注意力机制是深度学习核心的构建之一,注意力机制是深度学习核心的构件之一,来自Mohammed Hassanin等学者发表了《深度学习视觉注意力》综述论文,提供了50种注意力技巧的深入综述,并根据它们最突出的特征进行了分类。
2022-04-21 13:05:24 3.48MB 深度学习 分类 机器学习 人工智能
1
BA-Net:一种深度学习方法,可使用卫星图像的时间序列来绘制和绘制燃烧区域的日期 在过去的几十年中,用于烧伤区域的地图绘制和从遥感影像确定日期的方法一直是广泛研究的对象。 当前方法的局限性,以及对它们所需的输入数据的大量预处理,使其难以改进或应用于不同的卫星传感器。 在这里,我们探索基于每日多光谱图像序列的深度学习方法,这是一种有前途且灵活的技术,可应用于具有各种空间和光谱分辨率的观测。 我们使用从VIIRS 750 m波段重新采样到0.01º空间分辨率网格的输入数据测试了全球五个区域的建议模型。 派生的燃烧区域已针对更高分辨率的参考地图进行了验证,并与MCD64A1 Collection 6和FireCCI51全局燃烧区域数据集进行了比较。 我们显示,尽管使用的空间分辨率观测值低于两个全局数据集,但拟议的方法在燃烧区域测绘的任务中取得了竞争性的结果。 此外,与最先进的产品相比,我们改善
1
UNet Stylegan2 使用UNet Discriminator实现Stylegan2。该存储库的工作方式与大致相同。只需将所有stylegan2_pytorch命令替换为stylegan2_pytorch unet_stylegan2 。 更新:结果非常好。将需要研究将其与其他一些技术结合起来,然后我将编写完整的使用说明。 安装 $ pip install unet-stylegan2 用法 $ unet_stylegan2 --data ./path/to/data 引文 @misc { karras2019analyzing , title = { Analyzing and Improving the Image Quality of StyleGAN } , author = { Tero Karras and Samuli Laine and Miika
1
CNN-On-The-Cloud- 用于为Fashion MNIST数据集构建图像分类器的代码。 使用Keras库构建并在FloydHub云平台上接受培训。 您可以在签出相应的“中型”文章 您可以通过单击下面的按钮快速获得此代码并在云上运行。
2022-04-18 18:24:57 24KB tutorial deep-learning floydhub neural-networks
1
甲状腺 用于评估在超声中观察到的甲状腺结节的代码库:与使用ACR TI-RADS的放射科医生进行深度学习的比较。 由开发。 它包含使用Keras框架和TensorFlow后端的多任务CNN模型的实现。 如果您在研究中使用此代码,请考虑引用以下内容: @article{buda2019evaluation, title={Evaluation of Thyroid Nodules Seen on Ultrasound: Comparison of Deep Learning to Radiologists Using ACR TI-RADS}, author={Buda, Mateusz and Wildman-Tobriner, Benjamin and Hoang, Jenny K and Thayer, David and Tessler, Franklin N an
1
脸部检测器 从我的视频中查找详细信息:( ) 档案详细资料 Model_training.py :使用此python文件训练模型 Image_final_try :使用此文件,您可以对图像进行分类,无论其中是否有遮罩 Webcam_try.py :这个特殊的oython文件将帮助您从网络摄像头或任何视频中检测遮罩/不遮罩。 Haarcascade_frontalface_alt.xml :借助它,您可以检测面部特征。 此仓库的Github页数(( ) 要在您的终端中运行此代码,请执行以下操作: *打开您的终端 更改目录至您下载此代码的位置 如果尚未安装python3,请先安装python3! 运行python3 -m venv venv创建一个名为venv的虚拟环境。 运行source venv/bin/activate激活您的环境! 编写pip install -r re
2022-04-17 15:27:00 104KB opencv computer-vision deep-learning keras
1
在本文中,我们将讨论使用增强数据集训练DNN分类器。
1
深度融合网络以完成图像 介绍 深度图像完成通常无法和谐地将还原的图像融合到现有内容中,尤其是在边界区域中。 而且它常常无法完成复杂的结构。 我们首先介绍Fusion Block,用于生成灵活的alpha成分图,以组合已知区域和未知区域。 它为结构和纹理信息搭建了桥梁,因此已知区域中的信息可以自然地传播到完成区域。 使用这项技术,完井结果将在完井区域边界附近平滑过渡。 此外,融合块的体系结构使我们能够应用多尺度约束。 多尺度约束在结构一致性上大大提高了DFNet的性能。 此外,易于将这种融合块和多尺度约束应用于其他现有的深度图像完成模型。 具有特征图和输入图像的融合块供稿将以与给定特征图相同的分辨率为您提供完成结果。 更多细节可以在我们的找到 融合块的插图: 相应图像的示例: 如果您发现此代码对您的研究有用,请引用: @inproceedings{Hong:2019:DFN:3
2022-04-15 21:35:07 3.16MB deep-learning pytorch image-inpainting inpainting
1
deep+learning.pdf.zip
2022-04-15 18:13:00 55.31MB learning 机器学习 深度学习