使用可伸缩的触觉手套学习人类抓握的特征 介绍 这是论文“使用可伸缩的触觉手套学习人类抓握的签名”中提出的基于Pytorch的对象分类和对象估计方法的代码。 它依赖于Pytorch 0.4.1(或更高版本)和可以从单独下载的数据集。 系统要求 需要具有以下软件包的CUDA和Python 3.6+(可能不需要精确版本): numpy的(1.15.4) 火炬(0.4.1) 火炬档案(0.1.0) 火炬视觉(0.2.1) scipy(1.1.0) scikit学习(0.19.1) 数据准备 从下载classification和/或weights数据集。 将数据集metadata.mat文件提取到子文件夹data\[task] 。 生成的结构应如下所示: data |--classification | |--metadata.mat |--weights |
2023-04-05 21:27:20 28KB 系统开源
1
黄土丘陵区人工刺槐林土壤碳组分变化特征,韩新辉,佟小刚,为掌握黄土丘陵区退耕还林土壤碳库变化及固碳机制,本研究探讨了人工刺槐林1m深不同土层土壤总有机碳及其组分含量和分布的变化特�
2023-04-04 18:40:56 738KB 首发论文
1
图形处理中的局部特征提取。利用的是MATLAB
2023-04-04 18:10:54 1KB 角点提取
1
sensor_feature_extraction sensor_feature_extraction 从可穿戴惯性传感器数据中计算 100 多个特征。 这些特征是统计的、基于信号处理的和生物力学的。 步态周期事件检测还计算几个与步数/步幅相关的指标。
2023-04-04 13:13:10 13KB
1
摘要:针对目前严重的疲劳驾驶行为,研制了一种疲劳驾驶检测装置。在座椅头枕上前方正对驾驶员头部的位置安装1个红外线发射二极管和2个红外线接收头,由单片机控制红外线发射的电流强度,同时检测接收头的信息就可以检测头部的相对位置。如果驾驶员处在疲劳驾驶状态中,头部必定偏离正常位置并且时间超过设定值,则输出报警和制动控制信号。在几种典型车辆上对该系统进行了实验,验证了方法的正确性和有效性,并能达到较高的测量精度。   1 检测仪结构特点   该检测仪由单片机控制反射式红外线传感器对驾驶员头部位置进行检测,通过检测驾驶员在常规坐姿下的头部与座椅头枕的相对位置,自动判断驾驶员是否处在疲劳驾驶状态中。
1
针对神经性疾病难以确诊的问题,提出了一种基于图的特征选择方法,过滤掉不相干的特征,从而方便并且准确地对疾病患者进行诊断。算法首先基于先验知识定义了两种基本关系(特征关系和样本关系);然后将这两种关系嵌入到一个由最小二次损失函数和l2 -范数正则化因子组成的多任务学习框架中进行特征选择;最后,将约简得到的降维矩阵送入支持向量机(SVM)中对阿兹海默症患者进行确诊。通过对Alzheimer’s disease neuroimaging initiative(ANDI)的研究数据集进行实验得知,提出算法的分类效果均优于一般常用分类算法,如K最近邻法(KNN)、支持向量机(SVM)等。提出的算法通过考虑特征选择和引入两种数据的内在关系,有效提高了阿兹海默疾病诊断的正确率。
2023-04-03 21:51:57 933KB 阿兹海默病诊断 特征选择 流型学习
1
注意特征融合 用于“注意特征融合”的MXNet / Gluon代码 到目前为止,此仓库中有什么: ImageNet的代码,训练有素的模型和训练日志 PS: 如果您是我们提交的论文的审稿人,请注意,当前实现的准确性比本文中的准确性要高一些,因为它是一个带有很多技巧的新实现。 如果您是我的学位论文评估专家,发现论文与这个repo的数字有些出入,那是因为在论文提交后我又将代码重新实现一遍遍,添加了AutoAugment,Labelinging这些技巧,因此目前这个repo中的分类准确率会比论文中的数字高一些,还请见谅。 更改日志: 2020-10-08:通过一整套技巧重新实现图像分类代码 2020-09-29:上载所提交论文的图像分类代码和训练有素的模型 去做: 在ImageNet上运行AFF-ResNeXt-50和AFF-ResNet-50 在新的训练模型上更新Grad-CAM结果 重新实
2023-04-03 16:44:16 386.7MB Python
1
MATLAB首先对语音进行不同的非线性自适应时频分析的去噪,然后提取MFCC、GFCC、LPCC等特征,最后通过随机森林,对音标进行分类注1:音频文件数据集;注2:一行代码自动添加文件和子文件到路径;
2023-04-03 10:29:31 4KB matlab
1
面部特征的模式识别算法 线性判别分析(Fisher 线性判别) 支持向量机SVM 贝叶斯网络 隐马尔可夫模型及其基本问题 人工神经网络 模糊模式识别
2023-03-31 14:52:05 3.46MB 人脸识别
1
通常故障产生的高频行波主要有两类,第一类是由故障点和变电站之间的线路产生的,第二类是通过分支节点向故障点反射产生的。针对配电网的短路故障和接地故障,提出了一种基于暂态行波频谱特征分量的故障选线和测距方法,即提取和识别这两种故障行波,通过简单的计算就能准确地进行故障选线以及测算变电站到故障点之间的距离。该方法不需要估算多个测量点,既减少了人工排查时间,又缩短了停电范围,可靠地计算出故障点到变电站之间的距离。通过PSCAD软件搭建仿真模型以及运用Matlab进行数据处理,模拟多种不同类型的母线故障以及线路故障,均验证该方法满足了实验的要求。
2023-03-31 00:07:39 556KB 行业研究
1