pytorch中训练完网络后,需要对学习的结果进行测试。官网上例程用的方法统统都是正确率,使用的是torch.eq()这个函数。
但是为了更精细的评价结果,我们还需要计算其他各个指标。在把官网API翻了一遍之后发现并没有用于计算TP,TN,FP,FN的函数。。。
在动了无数歪脑筋之后,心想pytorch完全支持numpy,那能不能直接进行判断,试了一下果然可以,上代码:
# TP predict 和 label 同时为1
TP += ((pred_choice == 1) & (target.data == 1)).cpu().sum()
# TN predict 和 label 同时为0
1