上传者: 38626075
|
上传时间: 2023-03-11 10:51:41
|
文件大小: 3.41MB
|
文件类型: PDF
深度学习在人脸识别的研究和应用中取得一定成效,但因计算量大且耗时,不适用于小型嵌入式设备。基于融合梯度特征的轻量级卷积神经网络SqueezeNet提取人脸特征,既能保证该网络模型适用于内存相对小的嵌入式设备,又能保证获得的人脸特征对不同光照更具鲁棒性。实验结果表明,将8×8分块图像中提取的一阶梯度特征,与轻量级卷积神经网络提取的全局特征相融合的人脸识别算法,在LFW数据集中识别率可达97.28%,较传统轻量级卷积神经网络的人脸识别方法,识别率提高了4.36%。