融合梯度特征的轻量级神经网络的人脸识别

上传者: 38626075 | 上传时间: 2023-03-11 10:51:41 | 文件大小: 3.41MB | 文件类型: PDF
深度学习在人脸识别的研究和应用中取得一定成效,但因计算量大且耗时,不适用于小型嵌入式设备。基于融合梯度特征的轻量级卷积神经网络SqueezeNet提取人脸特征,既能保证该网络模型适用于内存相对小的嵌入式设备,又能保证获得的人脸特征对不同光照更具鲁棒性。实验结果表明,将8×8分块图像中提取的一阶梯度特征,与轻量级卷积神经网络提取的全局特征相融合的人脸识别算法,在LFW数据集中识别率可达97.28%,较传统轻量级卷积神经网络的人脸识别方法,识别率提高了4.36%。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明