我们可以先思考一下下面业务场景的解决方案: 某电商系统需要在每天上午10点,下午3点,晚上8点发放一批优惠券。 某财务系统需要在每天上午10点前结算前一天的账单数据,统计汇总。 某电商平台每天凌晨3点,要对订单中的无效订单进行清理。 12306网站会根据车次不同,设置几个时间点分批次放票。 电商整点抢购,商品价格某天上午8点整开始优惠。 商品成功发货后,需要向客户发送短信提醒。 类似的场景还有很多,我们该如何实现?以上这些场景,就是任务调度所需要解决的问题。
2024-09-14 14:43:26 188KB 分布式
1
基于移动端开发的考勤系统数据库设计_刘佳瑜.caj
2024-09-14 13:04:02 253KB
1
针对语音情感信号的复杂性和单一分类器识别的局限性,提出一种核函数极限学习机(KELM)决策融合的方法用于语音情感识别。首先对语音信号提取不同的特征,并训练相应的基分类器,同时将输出转化为概率型输出;然后利用测试集在基分类器的输出概率值计算自适应动态权值;最后对各基分类器的输出进行线性加权融合得到最终的分类结果。利用该方法对柏林语音库中4种情感进行识别,实验结果表明,提出的融合KELM方法优于常用的单分类器以及多分类器融合方法,有效地提高了语音情感识别系统的性能。
2024-09-14 12:07:28 422KB 语音情感识别
1
标题中的“基于间接卡尔曼滤波的IMU与GPS融合MATLAB仿真”涉及的是惯性测量单元(IMU)和全球定位系统(GPS)数据融合技术,利用了数学上的间接扩展卡尔曼滤波(Indirect Extended Kalman Filter, IEKF)方法。在现代导航系统中,这种融合技术被广泛应用,以提高定位精度和鲁棒性。 卡尔曼滤波是一种统计滤波算法,用于估算动态系统中随时间变化的未知变量。扩展卡尔曼滤波是卡尔曼滤波的非线性版本,适用于处理非线性系统模型。在间接卡尔曼滤波中,滤波器的更新和预测步骤通常涉及对系统状态和测量的非线性函数进行求导,以得到线性化版本。 在这个项目中,使用MATLAB进行仿真,这是一种强大的数值计算和可视化工具,特别适合进行信号处理和系统建模。MATLAB的Simulink环境可以创建图形化模型,便于设计、仿真和分析复杂的系统,包括IMU和GPS数据融合。 IMU包含加速度计和陀螺仪,能提供物体的线性加速度和角速度信息。然而,由于漂移和噪声,长期使用后IMU的数据会累积误差。相反,GPS可以提供全球范围内的精确位置信息,但可能受到遮挡、多路径效应和信号延迟的影响。通过将两者数据融合,我们可以得到更稳定、准确的位置估计。 IEKF的流程大致如下: 1. **初始化**:设置初始状态估计和协方差矩阵。 2. **预测**:根据IMU模型和上一时刻的状态,预测下一时刻的状态。 3. **线性化**:由于模型非线性,需要对预测状态和测量进行泰勒级数展开,得到线性化模型。 4. **更新**:利用GPS测量,更新状态估计,减小预测误差。 5. **协方差更新**:更新状态估计的不确定性。 在“Indirect_EKF_IMU_GPS-master”这个压缩包中,可能包含了以下文件和内容: - MATLAB源代码:实现IEKF算法和仿真逻辑的.m文件。 - 数据文件:可能包含预生成的IMU和GPS仿真数据,用于测试滤波器性能。 - Simulink模型:图形化的系统模型,显示IMU、GPS和EKF之间的数据流。 - 结果可视化:可能有显示滤波结果的图像或日志文件,如轨迹对比、误差分析等。 通过这个项目,学习者可以深入了解如何在实际应用中结合IMU和GPS数据,以及如何利用MATLAB进行滤波器设计和系统仿真。此外,还能掌握如何处理非线性系统和不确定性,并了解如何评估和优化滤波器性能。对于想要在导航、自动驾驶或无人机等领域工作的工程师来说,这是一个非常有价值的学习资源。
2024-09-14 11:49:30 8KB matlab
1
进度条 是大二下学期的练手作品,参考了某本书籍(忘记书名啦)编写的,目的是了解进度条控件的简单应用。这是因为没有学习和使用过MFC的进度条控件,于是想了解。 功能简介: 进度条控件的简单使用; - 开发环境:Visual C++ 6.0 - 开发语言:MFC + C/C++
2024-09-13 18:31:30 4.31MB
1
随着电子技术和数字系统设计的快速发展,可编程逻辑器件,尤其是现场可编程门阵列(FPGA)的应用变得越来越广泛。FPGA由于其高度的灵活性和可重配置性,成为了众多领域,包括通信、军工、航空航天、医疗设备等关键应用的首选硬件平台。在FPGA的使用过程中,其配置方式是至关重要的。配置可以大致分为动态配置和静态配置两大类。动态配置指的是FPGA在正常运行过程中能够接收新的配置信息并更新其逻辑的功能,而静态配置则是在FPGA工作之前完成配置,通常无法在工作时更改。 本文研究的是基于PCI和SelectMAP接口的FPGA动态配置技术。PCI(外围组件互连)是一种广泛使用的计算机总线标准,它允许计算机系统中的各种组件之间进行高速数据传输。而SelectMAP是一种并行配置接口,它以高速并行方式对FPGA进行配置,相较于串行配置模式,具有更高的数据传输速率。 论文首先介绍了FPGA的动态配置基础知识,特别强调了SelectMAP配置模式。SelectMAP配置模式具有四个主要步骤:上电、初始化、配置和启动。在这个过程中,FPGA设备首先上电,然后进行初始化设置,之后通过SelectMAP接口加载配置文件进行配置,最后启动并运行用户设计的逻辑功能。 在实际应用中,FPGA常常需要嵌入到特定的系统中,例如基于CPCI(Compact PCI,紧凑型PCI)的系统。CPCI是一种适用于工业环境的标准化总线接口,它支持热插拔和高可靠性,广泛应用于工业控制、数据采集和处理等领域。本文详细探讨了如何在CPCI系统中对FPGA模块进行动态配置,包括配置子模块的系统组成以及配置实现的具体方法。 配置方法的实现需要涉及硬件和软件两个方面。在硬件方面,需要设计CPLD(复杂可编程逻辑器件)作为中转模块,通过编程控制数据流和控制流,确保FPGA可以从PCI或SelectMAP接口接收到正确的配置数据。软件方面,则需要编写相应的程序设计,以控制CPLD的工作以及管理整个配置过程。这部分工作通常需要嵌入式编程技能以及对PCI和SelectMAP协议的深入了解。 综合上述内容,本文展示了SelectMAP接口配置FPGA的具体实现方式,强调了本配置方法的方便、灵活和快捷特性。动态配置技术在特定的应用环境中,如系统要求快速重启、功能升级或者应对不同工作场景的情况下,显示出极高的实用价值和推广潜力。通信与信息系统专业领域内的研究者和工程师可以通过本文了解到FPGA动态配置的关键技术和实现手段,这对于相关硬件设计和应用开发具有重要的参考意义。
2024-09-13 16:38:59 390KB 通信与信息系统
1
# Springboot_Vue_Python_Water_quality_management_prediction 基于Springboot+Vue+Python深度神经网络学习算法水质管理预测系统设计毕业源码案例设计 程序开发软件:Eclipse/Idea + WebStorm/VsCode + Pycharm 数据库:mysql 开发技术:Springboot + Vue + Python 这个是一个水质管理和预报系统,它是一个全栈Web应用程序,使用机器学习和深度神经网络算法来预测未来的水质。系统一共有2个身份包括管理员和用户。管理员登录后可以查询最新水质检测数据,也可以上报新的水质数据,可以查询管理历史水质数据,查询历史水质趋势图,训练自己的模型参数,选择一个算法模型结果预测下个月的水质信息,管理所有的用户信息;用户登录后比管理员就少了个用户管理功能。 管理员账号密码: admin/123 用户账号密码:user1/123
2024-09-13 11:21:53 4.32MB spring boot spring boot
1
基于python微博情感分析
2024-09-13 10:53:11 1KB python
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-09-13 10:10:25 3.51MB matlab
1
该系统能实现医院呼叫所需的一般功能。由于每次呼叫的时间在数十毫秒级别,很难遇到两个呼叫器在这么短的时间内同时发出呼叫信息,本设计的硬件电路结构十分简洁、成本低廉。硬件和软件设计方案已通过实验检验,系统各项参数稳定、功耗低,对在多发单收情况下,系统运行稳定,通信误码率低,设计需要的各项功能都能实现。
2024-09-12 14:46:33 252KB RF|微波
1