涵盖此存储库中代码的详细教程:
该网络分为四个部分,并逐渐变得更加复杂。 第一部分是了解网络核心部分的最低要求。 它用于为一张图像着色。 一旦有了一些实验,我发现添加剩余的80%的网络变得更加容易。
在第二阶段(测试版)中,我开始使培训流程自动化。 在完整版中,我添加了预训练分类器的功能。 GAN版本不在本教程中。 这是一个实验版本,使用了一些新兴的图像着色最佳实践。
:popcorn:
注意:以下显示图像是精心挑选的。 大部分图像大部分是黑白图像,或浅褐色。 狭窄而简单的数据集通常会产生更好的结果。
安装
pip install keras tensorflow pillow h5py jupyter scikit-image
git clone https://github.com/emilwallner/Coloring-greyscale-images
cd Coloring-greyscale-images/
jupyter notebook
去做所需的笔记本,以“ .ipynb”结尾的文件。 要运行模型,请转到菜单,然后单击“单元格”>“全部运行”
对于GAN版本,
1