cadence设计射频电路教程,全套资料,包括低噪放,混频器,压控振荡器,模拟射频芯片电路教程,喜欢的欢迎下载
2021-03-01 15:58:36 4.31MB cadence
1
一种基于数字可控电感的宽带压控振荡器
2021-02-25 17:05:18 1.32MB 研究论文
1
声波介导的光子晶体光纤中以1μm频带激发的光电振荡器
2021-02-25 16:05:47 1.53MB 研究论文
1
基于采用级联调制器的光电振荡器的自振荡光学频率梳状发生器
2021-02-25 09:09:25 1.21MB 研究论文
1
报道了一个内腔式连续波、单谐振1.9 μm和2.4 μm双波长激光输出的光参量振荡器(OPO)。实验采用单管半导体激光二极管(LD)抽运掺钕钒酸钇(NdYVO4)晶体,腔内抽运掺氧化镁的周期性极化铌酸锂(PPMgLN)晶体,得到1.9 μm和2.4 μm双波长连续激光输出。在室温下,当LD功率为5.5 W时,同时获得了750 mW、1.9 μm波长的信号光和370 mW、2.4 μm波长的闲频光输出,光光转换效率分别为13.6%和6.7%,总的转换效率达到了20%以上。测试5 h,功率不稳定性小于1.8%。另外还对不同长度的PPMgLN晶体进行了阈值和转换效率的特性分析。通过输出波长稳定性测试发现,对晶体的温度进行更好地控制,可以改善波长漂移的现象。
2021-02-25 09:08:46 1.75MB 非线性光 光参量振 双波长激 连续波
1
实验研究了基于多周期的掺镁铌酸锂晶体光参量振荡器(OPO),分析了光学参量振荡器的输出光谱特性。实验中,采用激光二极管(LD)端面抽运的声光调Q Nd:YVO4激光器作为光参量振荡器的抽运源,谐振腔采用双凹腔结构。在调Q开关重复频率为10 kHz,周期极化掺镁铌酸锂(PPMgLN)晶体的温度为25.4 ℃的条件下,实验测得光学参量振荡器的振荡阈值为110 mW。当输入的抽运光的平均功率为325 mW时,获得了平均功率为84 mW的信号光输出,其光-光转换效率为25.8%。通过改变周期极化掺镁铌酸锂晶体的温度(25.4~120 ℃)和极化周期(28.5~30.5 μm),实现了信号光在1449.6~1635 nm范围内的可调谐输出。在室温25.4 ℃时,观测到了抽运光与信号光的和频光的光谱。实验结果表明,光参量振荡器输出光谱的半峰全宽(FWHM)小于0.5 nm。
1
报道了1064 nm单频激光抽运的KTP晶体外腔单谐振光参量振荡器(OPO),获得了波长为2.05 μm的纳秒激光脉冲输出。在平-平腔中,将2块II类相位匹配KTP晶体按走离补偿方式放置,在400 Hz重复频率下,抽运单脉冲能量达到5 mJ时获得了单脉冲能量为0.9 mJ的2.05 μm信号光输出,其脉宽约为3.7 ns,对应抽运光-信号光转换效率约为18%,光束质量因子M2在x、y方向分别为2.08、3.03。
2021-02-07 12:06:33 5.57MB 非线性光 光参量振 2 μm激光
1
全光纤激光振荡器具有结构简单、稳定性好、成本低廉等优点, 是目前光纤激光器工业市场中使用较多的一类激光器。2014年, 芬兰CoreLase公司推出了输出功率为2 kW的全光纤激光振荡器; 同年, 美国相干公司基于空间结构实现了输出功率为3 kW的全光纤激光振荡器; 2015年和2016年, 国防科技大学基于单端和双端抽运方案分别实现了输出功率为2 kW和2.5 kW的全光纤激光振荡器。由于受热效应、非线性效应和模式不稳定效应的限制, 基于振荡器结构的全光纤激光器的输出功率都不大于3 kW。2016年7月, 国防科技大学实现了输出功率为2.5 kW的全光纤激光振荡器, 其输出光谱的受激拉曼散射
2021-02-06 20:04:06 1.58MB
1
高功率光纤激光器在工业加工、材料处理等领域有着诸多应用,得到国内外研究机构的广泛关注。目前,高功率光纤激光器主要有两种结构,一种是直接振荡器结构,一种是主振荡功率放大结构。采用振荡器结构的光纤激光器具有结构简单、稳定性好、成本低廉等优点,是目前中低功率激光器市场使用较多的一类方案。2013年,国防科学技术大学基于单端抽运结构实现了输出功率1 kW的全光纤振荡器;2014年,又将该方案的输出功率提高到1.5 kW。2014年,芬兰CoreLase公司推出了2 kW的全光纤振荡器产品,美国相干公司基于空间结构实现了3 kW的光纤振荡器。但是,由于热效应、非线性效应的限制,尚未出现相关输出功率大于2
2021-02-06 19:07:25 1.92MB
1
锁相的意义是相位同步的自动控制,能够完成两个电信号相位同步的自动控制闭环系统叫做锁相环,简称PLL。它广泛应用于广播通信、频率合成、自动控制及时钟同步等技术领域。锁相环主要由相位比较器(PC)、压控振荡器(VCO)。低通滤波器三部分组成,如图1所示。  压控振荡器的输出Uo接至相位比较器的一个输入端,其输出频率的高低由低通滤波器上建立起来的平均电压Ud大小决定。施加于相位比较器另一个输入端的外部输入信号Ui与来自压控振荡器的输出信号Uo相比较,比较结果产生的误差输出电压UΨ正比于Ui和Uo两个信号的相位差,经过低通滤波器滤除高频分量后,得到一个平均值电压Ud。这个平均值电压Ud朝着减小VCO输
1