行业分类-设备装置-三维组织器官培养模型及其高通量自动化立体图像分析平台及其应用
2023-04-30 10:19:23 738KB
1
内容:本资源是基于肌电信号去进行分类的,通过对采集的肌电信号进行特征抽取,然后进行分类。 特征抽取方法:主成分分析法,支持向量机递归消除法,相关性热力图法 分类算法:KNN,SVM,随机森林
2023-04-28 14:35:33 14.8MB sEMG 机器学习分类算法
1
有效地进行图像的分类,该代码可以对图像的光谱特征和纹理特征进行提取 有效地进行图像的分类,该代码可以对图像的光谱特征和纹理特征进行提取
2023-04-26 21:53:58 1KB 分类 MATLAB
1
近年来,恶意软件呈现出爆发式增长势头,新型恶意样本携带变异性和多态性,通过多态、加壳、混淆等方式规避传统恶意代码检测方法。基于大规模恶意样本,设计了一种安全、高效的恶意软件分类的方法,通过提取可执行文件字节视图、汇编视图、PE 视图3个方面的静态特征,并利用特征融合和分类器集成学习2种方式,提高模型的泛化能力,实现了特征与分类器之间的互补,实验证明,在样本上取得了稳定的F1-score(93.56%)。
1
进行学习机器学习,需要很多数据集进行练习,本数据集就是给开始学习人工智能的朋友准备的初级数据集,不再需要自己到处寻找数据集。
2023-04-25 14:27:31 55KB 机器学习数据集dog
1
经典的模式识别教材Duda《模式分类》第二版(教材)
1
maxent-srl 使用最大熵分类器的语义角色标记
2023-04-24 19:15:08 54KB Python
1
一、前言 此示例演示如何创建和训练一个简单的卷积神经网络,以使用深度学习对 SAR 目标进行分类。 深度学习是一种强大的技术,可用于训练健壮的分类器。它已经在从图像分析到自然语言处理的不同领域显示出其有效性。这些发展对SAR数据分析和SAR技术具有巨大的潜力,正在慢慢实现。SAR相关算法的一项主要任务一直是目标检测和分类,称为自动目标识别(ATR)。在这里,我们使用一个简单的卷积神经网络来使用深度学习工具箱对SAR目标进行训练和分类。 深度学习工具箱提供了一个框架,用于设计和实现具有算法、预训练模型和应用程序的深度神经网络。 此示例演示如何: • 下载数据集。 • 加载和分析图像数据。 • 数据的拆分和扩充。 • 定义网络体系结构。 • 训练网络。 • 预测新数据的标签并计算分类精度。 为了说明此工作流程,我们将使用空军研究实验室发布的移动和静止目标获取和识别 (MSTAR) 混合目标数据集 [1]。我们的目标是开发一个模型,根据SAR图像对地面目标进行分类。 二、下载数据集 此示例使用的 MSTAR 目标数据集包含来自 8688 个地面车辆的 7 个 SAR 图像和一个校准目标。
2023-04-23 17:04:01 1.73MB SAR 目标分类 深度学习 matlab
pytorch实现文本情感分析详细教程 关键词:python,情感分析,英文文本分类,Bi-LSTM 训练集准确度高达98%,验证集准确度最高达到82%,数据集来自竞赛平台DataCastle,竞赛链接为:https://challenge.datacastle.cn/v3/cmptDetail.html?spm=5176.12282016.0.0.31ed52e3oG2G01&id=359,本代码可以帮助大家获取前70的排名成绩,后续可以进行二次修改,有望冲击前50。
2023-04-22 14:40:48 259.93MB 情感分析 文本分类 pytroch python
1
使用方法:运行main.py文件即可,或者命令行输入"python main.py"。
1