肯节能:2019年半年度报告.PDF
2021-06-02 18:04:46 1.49MB 行业
数学问题-希尔特.pdf
2021-05-30 09:02:09 17.28MB 希尔伯特
1
电脑天才 求君 的 深入dos 编程 绝对经典 适合电脑初学者及提高者
2021-05-30 01:18:25 10.13MB 求伯君 《深入DOS编程》 dos
1
bert_chinese_pytorch 参考代码: CSDN博文(施工中):
2021-05-29 18:17:42 8KB 附件源码 文章源码
1
为了更加准确地提取扰动信号特征,提出了基于变分模态分解(VMD)的电能质量扰动检测新方法。该方法由VMD和希尔特变换(HT)2个部分组成。首先,对扰动信号进行傅里叶变换以确定VMD的预设分解尺度;然后,利用VMD将扰动信号分解为系列调幅-调频函数之和;最后,对每个调幅-调频函数进行HT,求取瞬时幅值和瞬时频率,进而确定扰动信号特征。较之希尔特-黄变换和局部均值分解方法,VMD方法不仅可分析不同时间支集的扰动信号,处理复合扰动和频率相近的奇数次谐波,也不存在模态混叠,获取的瞬时幅值和瞬时频率更加准确。仿真信号和变电站电容器组投入时的电压信号分析结果证明了所提方法的可行性和有效性。
1
运用凯斯西储大学滚动轴承故障数据,运用MOMEDA对信号进行周期的增强,提高信噪比,并运用希尔特变换,与Teager能量算子包络解调,体现Teager能量算子二次增强。同时还存在MCKD,
2021-05-23 21:03:23 2.27MB MCKD MOMEDA 希尔伯特变换 eager能量算子
编制该系统的Luenberge(龙格)第一能控、第二能控标准型的通用MATLAB程序,并用以下系统进行验证。
2021-05-23 16:21:34 865B Luenberge MATLAB程序 龙伯格
1
在使用PMSM时,转子磁场的速度必须等于定子(电枢)磁场的速度(即同步)。转子磁场和定子磁场之间失去同步会导致电机停转。FOC表示这样一种方法:将其中一个磁通(转子、定子或气隙)视为用于为其他磁通之一创建参考坐标系的基础,其目的是将定子电流解耦为用于产生转矩的分量和用于产生磁通的分量。这种解耦保证了复杂三相电机的控制方式与采用单独励磁的直流电机一样简单。这意味着电枢电流负责产生转矩,而励磁电流负责产生磁通。本应用笔记中将转子磁通视为定子磁通和气隙磁通的参考坐标系。表面安装永磁型PMSM(SPM)中FOC的特殊性在于定子idref(对应于d轴上的电枢反应磁通)的d轴电流参考设置为零。转子中的磁体产生转子磁链Λm,这一点与交流感应电机(AC Induction Motor, ACIM)不同,交流感应电机需要恒定参考值idref来磁化电流,从而产生转子磁链。本章的后面部分将介绍内置式永磁(Interior Permanent Magnet, IPM)型PMSM电机的d轴电流参考。 气隙磁通等于转子磁链的总和。这是由永磁体产生的,电枢反应磁链则是由定子电流产生的。对于FOC中的恒转矩模式,仅d轴气隙磁通一项即等于Λm, d轴电枢反应磁通为零。相反,在恒功率运行中,定子电流中产生磁通的分量(即负id)用于弱化气隙磁场以实现更高速度。在不需要位置传感器和速度传感器的无传感器控制中,面临的挑战是实现一个能够抑制温度、开关噪声和电磁噪声等干扰的稳定速度估算器。当应用对成本敏感时(不允许部件运动),通常需要无传感器控制。例如,使用位置传感器时或在不利电气环境下运行电机时。但是,对于精确控制的要求(特别是在低速情况下)不应视为给定应用的关键问题。位置和速度估算基于电机的数学模型。因此,模型与实际硬件越接近, 估算器的性能就越好。 PMSM数学建模依赖于其拓扑,主要分为两种:表面贴装电机和内置式永磁(IPM)电机。每种电机在不同应用需求方面都有各自的优势和劣势。提出的控制方案已开发用于表面贴装和内置式永磁同步电机。下图所示为表面贴装电机,与内置式PMSM相比,该电机具有低转矩纹波和低成本的优点。由于所考虑电机类型的气隙磁通是平滑的,因此定子的电感值Ld = Lq(非凸极PMSM)以及反电磁力(Back Electromagnetic Force, BEMF)是正弦曲线。
2021-05-23 16:07:34 1.26MB 龙伯格观测器 PMSM FOC
1
资源主要是:陈雄编的《LISP技巧与范例》光盘及相应PDF书。希望能够帮到各位。
2021-05-22 09:46:51 18.72MB 陈伯雄 LISP 光盘
1
使用Matlab制作的德图电子版,可以用来写自动控制原理的作业。都是A4纸大小的纸张,包括1x1,2x1,2x2规格的。
2021-05-21 17:02:14 28KB 伯德图 BodePlot 自动控制原理 坐标纸
1