关于PyTorch 1.2.0 现在,master分支默认支持PyTorch 1.2.0。 由于严重的版本问题(尤其是torch.utils.data.dataloader),MDSR功能被暂时禁用。 如果您必须训练/评估MDSR模型,请使用旧版分支。 EDSR-PyTorch 关于PyTorch 1.1.0 1.1.0更新进行了较小的更改。 现在,我们默认情况下支持PyTorch 1.1.0,如果您喜欢旧版本,请使用旧版分支。 该存储库是CVPRW 2017,第二版NTIRE的PyTorch官方实现,其论文为“用于单图像超分辨率的增强型深度残差网络” 。 您可以从找到原始代码和更多信息。 如果您发现我们的工作对您的研究或出版物有用,请引用我们的工作: [1] Bee Lim,Sanghyun Son,Heewon Kim,Seungjun Nah和Kyoung Mu Lee
2023-02-11 16:11:33 2MB Python
1
pytorch-fcn Pytorch实现 要求 火炬0.31 python 3.5
2023-02-10 17:17:03 2KB Python
1
基于pytorch的垃圾分类,带训练模型和数据集的下载链接! 多达200类别-垃圾分类! 附带5种先进的图像分类网络! 代码支持知识蒸馏,里面有详细的教程! 代码里面还有50+种模型选择,支持对比实验,每个模型都支持Imagenet预训练权重,详细请看代码里面的Readme!!
2023-02-10 12:21:40 3.46MB 图像分类 垃圾分类 pytorch
1
训练模型主要分为五个模块:启动器、自定义数据加载器、网络模型、学习率/损失率调整以及训练可视化。
2023-02-10 11:14:52 21KB 深度学习 pytorch 车型识别 毕业设计
1
support for: ONNX (.onnx, .pb, .pbtxt), Keras (.h5, .keras), CoreML (.mlmodel), Caffe2 (predict_net.pb, predict_net.pbtxt), MXNet (.model, -symbol.json) TensorFlow Lite (.tflite). experimental support for : Caffe (.caffemodel, .prototxt), PyTorch (.pth), Torch (.t7), CNTK (.model, .cntk), PaddlePaddle (model), Darknet (.cfg), scikit-learn (.pkl), TensorFlow.js (model.json, .pb) TensorFlow (.pb, .meta, .pbtxt).
1
欧氏距离matlab代码Tensorflow_Pytorch_Sinkhorn_OT 用于计算两个离散分布之间的最佳运输(OT)距离的Sinkhorn算法[1]的Tensorflow(1.0或2.0)和Pytorch实现。 概述 这些实现是从Cuturi到Tensorflow和Pytorch的改编,它们能够利用其自动差异功能和在GPU上运行的能力。 这些实现并行计算N对离散分布对(即,概率向量)之间的OT距离。 它对应于Cuturi实施中的“ N倍1-vs-1模式”。 输入 a :D_1×N矩阵,每列是D_1维(规格化)概率向量。 b :D_2×N矩阵,每列是D_2维(规格化)概率向量。 M :D_1×D_2矩阵,成本函数正,对角线应为零。 lambda_sh, numItermax, stopThr :算法的参数,与Cuturi的实现相同。 a, b, M是Tensorflow或Pytorch的张量,因此,反向传播适用。 输出 该算法输出一个N维矢量,第n个元素是a[:,n]与b[:,n]之间的(近似)OT距离。 测试 在test.py文件中,提供了Cuturi的Matlab实现与我
2023-02-09 17:49:50 5KB 系统开源
1
搭建LSTM网络的情感分类网络,加载预训练的word2vec语言模型参数,在IMDB训练数据集上进行模型训练,获得最优分类模型,并在IMDB测试数据集上进行测试,将训练和测试结果进行可视化展示。
2023-02-07 22:42:17 10KB 自然语言处理 pytorch LSTM word2vec
1
用于人类活动识别的深度学习 深度学习可能是人类活动识别最近的未来。 虽然现有的非深度方法有很多,但我们仍然想释放深度学习的全部力量。 这个 repo 提供了一个使用深度学习来执行人类活动识别的演示。 我们同时支持 Tensorflow 和 Pytorch。 先决条件 Python 3.x 麻木 Tensorflow 或 Pytorch 1.0+ 数据集 有许多用于人类活动识别的公共数据集。 您可以参考这篇调查文章以了解更多信息。 在本演示中,我们将使用 UCI HAR 数据集作为示例。 这个数据集可以在找到。 当然,这个数据集在放入网络之前需要进一步的预处理。 我还提供了数据集的预处理版本作为.npz文件,以便您可以专注于网络(在下载)。 还强烈建议您下载数据集,以便您可以自己体验所有过程。 #主题 #活动 频率 30 6 50赫兹 用法 对于 Pytorch(推荐),进入p
1
[PYTORCH]扮演超级马里奥兄弟的非同步优势演员评判(A3C) 介绍 这是我的python源代码,用于训练特工玩超级马里奥兄弟。 通过使用纸异步方法用于深强化学习引入异步优势演员,评论家(A3C)算法。 样品结果 动机 在我实施该项目之前,有多个存储库可以很好地重现本文的结果,这些存储库可以在Tensorflow,Keras和Pytorch等不同的常见深度学习框架中进行。 我认为,其中大多数都很棒。 但是,它们似乎在许多方面都过于复杂,包括图像的预处理,环境设置和权重初始化,这使用户的注意力从更重要的事情上转移了。 因此,我决定编写更简洁的代码,以简化不重要的部分,同时仍然严格
2023-02-06 16:42:14 300.86MB python mario reinforcement-learning ai
1
MASR的V2版本训练Conformer模型文件,使用Fbank,Pytorch,训练数据为超大数据集,13000+小时。 源码地址:https://github.com/yeyupiaoling/MASR
2023-02-02 17:35:43 435.03MB pytorch asr 语音识别 wenetspeech