基于青岛某办公建筑2015 年全年逐时总用电能耗及空调用电能耗数据,利用kmeans 聚类算法对其进行聚 类,将全年能耗水平分为四大类。利用求平均值法得到每一类典型设备使用率曲线。将典型曲线的数据、日前两 周数据以及气象数据一同作为BP 神经网络的输入,预测未来24 小时的建筑总用电和空调用电,该方法比单用日 前两周数据及气象数据进行负荷预测能获得更低的相对误差、均方根误差、平均绝对百分误差。BP 负荷预测相对 误差在5%以内,而kmeans-BP 负荷预测算法控制在±2.5%以内; BP 预测得到的均方根误差和平均绝对百分误差 范围分别在4.6~ 9.0 之间、2.3%~ 4.4%之间,km
1
研究了离焦量、脉冲能量、扫描间距、扫描速度和重复频率等激光加工参数对金属表面着色及微纳结构制备的影响机理,诱导制备了氧化膜、类光栅、凹坑和柱状突起4种结构,这些结构会使不锈钢表面产生薄膜干涉、光栅衍射和陷光等现象。通过Matlab软件在工艺参数与颜色HSB值之间建立了一个单隐含层的反向传播(BP)神经网络,该神经网络的训练均方根误差为0.0078,色相H、饱和度S和亮度B的测试相对误差分别为23%,10.4%和5.6%。该神经网络在一定程度上揭示了工艺参数与颜色之间的映射关系,使用该神经网络模型可以对激光着色效果作出有效的预测。
2021-02-06 20:03:58 13.14MB 激光技术 微纳结构 BP神经网 不锈钢
1
用遗传算法GA训练BP神经网络的程序,非常实用的MATLAB代码
2019-12-21 21:52:16 609KB GA BP神经网
1