基于kmeans聚类与BP神经网络算法的办公建筑逐时电负荷预测_刘倩颖.pdf

上传者: SparkQiang | 上传时间: 2021-04-08 14:09:04 | 文件大小: 2.54MB | 文件类型: PDF
基于青岛某办公建筑2015 年全年逐时总用电能耗及空调用电能耗数据,利用kmeans 聚类算法对其进行聚 类,将全年能耗水平分为四大类。利用求平均值法得到每一类典型设备使用率曲线。将典型曲线的数据、日前两 周数据以及气象数据一同作为BP 神经网络的输入,预测未来24 小时的建筑总用电和空调用电,该方法比单用日 前两周数据及气象数据进行负荷预测能获得更低的相对误差、均方根误差、平均绝对百分误差。BP 负荷预测相对 误差在5%以内,而kmeans-BP 负荷预测算法控制在±2.5%以内; BP 预测得到的均方根误差和平均绝对百分误差 范围分别在4.6~ 9.0 之间、2.3%~ 4.4%之间,km

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明