项目概览 这是一款高性能双轮自平衡机器人开发框架,以STM32F103C8T6微控制器为核心,融合嵌入式开发、控制算法与物联网技术,适用于机器人开发学习、毕业设计及智能硬件原型验证 。资源包包含完整的硬件设计文档、多版本控制程序(PID/LQR/串级PID)及配套上位机调试工具,支持蓝牙遥控、超声波避障等扩展功能 。 核心技术亮点 1. ​颠覆性硬件架构​ ​主控芯片​:ARM Cortex-M3内核STM32F103C8T6(72MHz主频,64KB Flash),专为实时控制优化 ​传感器系统​:MPU6050六轴姿态传感器(±2000°/s陀螺仪+±2g加速度计),集成DMP姿态解算算法 ​动力驱动​:TB6612FNG双通道驱动模块(1.2A持续电流),效率比传统L298N提升40% ​人机交互​:0.96寸OLED显示PID参数/倾角数据,HC-05蓝牙支持手机APP遥控 2. ​智能控制算法库​ ​经典PID​:直立环+速度环双闭环控制,响应时间<50ms ​进阶LQR​:线性二次调节器实现最优控制,稳定性提升30% ​混合串级PID​:内环速度控制(精度±0.5°)与外环平衡控制协同工作 ​抗干扰设计​:卡尔曼滤波算法消除传感器噪声 3. ​模块化扩展接口​ 预留超声波、红外循迹、语音控制接口 支持ROS机器人操作系统二次开发 兼容3S航模锂电池(12.6V)与Type-C供电双模式
2025-10-21 19:44:08 9.26MB stm32平衡车
1
STM32 PDO(Process Data Object)是CANopen通信协议中的一个重要组成部分,用于在CAN网络上高效传输实时数据。PDO主要用于设备间的直接数据交换,分为发送PDO(TPDO)和接收PDO(RPDO)。STM32作为CANopen网络中的主站(Master)或从站(Slave),都需要配置PDO来实现数据的发送和接收。 STM32 PDO发送: 1. **TPDO配置**:在STM32中,需要预先定义TPDO映射表,将需要发送的数据对象映射到PDO中。这包括确定PDO的传输类型(如事件触发或定时触发)、PDO编号、以及传输参数。 2. **PDO触发**:当满足特定条件(如内部状态改变、外部信号触发)时,STM32会自动打包对应的数据并发送PDO报文。 3. **PDO数据编码**:PDO中的数据根据映射表进行编码,确保数据正确无误地传输到CAN总线。 STM32 PDO接收: 1. **RPDO配置**:接收PDO需要设置RPDO映射,定义哪些PDO报文中的数据应被接收并解码到STM32的寄存器中。 2. **PDO接收处理**:STM32通过CAN接口监听网络上的PDO报文,一旦接收到匹配的PDO,就会解码数据并更新内部状态。 3. **中断处理**:通常,STM32会在接收PDO报文后产生中断,通过中断服务程序处理接收到的数据。 移植CanFestival协议: 1. **理解协议**:CanFestival是一个开源的CANopen实现,它提供了完整的CANopen栈,包括NMT(Network Management)、SDO(Service Data Object)、PDO等服务。 2. **库集成**:将CanFestival库集成到STM32项目中,通常涉及修改Makefile或CMakeLists.txt文件,确保编译时链接到CanFestival的相关库文件。 3. **配置节点**:每个CANopen节点都有一个唯一的节点ID,STM32作为Master或Slave都需要配置合适的ID。 4. **对象字典**:CanFestival需要对象字典来存储PDO映射和其他参数,需要根据应用需求创建并初始化。 5. **事件处理**:CanFestival提供了NMT服务,可以实现主机对节点的在线/离线状态监控。主机通过发送NMT命令来检测节点是否在线。 D6-CANOPEN-MASTER-PDO和D6-DEMO-SLAVER-PDO可能包含了针对STM32的CANopen Master和Slave的示例代码或配置文件: - **Master示例**:可能包含如何配置TPDO,如何发送NMT命令以检查节点状态的代码示例。 - **Slave示例**:可能包括如何配置RPDO,如何响应Master的PDO和NMT命令的代码示例。 通过STM32的PDO发送和接收,结合CanFestival协议的移植,可以构建一个有效的CANopen网络,实现设备间的通信以及主机对节点在线状态的监控。在实际项目中,需仔细阅读并理解这些示例,根据具体需求进行适当的修改和优化。
2025-10-20 20:55:15 19.86MB stm32
1
飞特舵机STM32版本是一种基于STM32微控制器的舵机控制系统。STM32微控制器是STMicroelectronics(意法半导体)公司生产的一系列32位ARM Cortex-M微控制器。它们广泛应用于工业控制、消费电子、通信设备、医疗设备等领域。FTServo_stm32HAL-main是该舵机控制系统的主要代码库或者固件,HAL指的是硬件抽象层,它是一种软件设计模式,用于隐藏硬件的特定细节,为上层应用提供统一的接口。 舵机(Servo)是一种可以精确控制角位移的机电设备,广泛应用于遥控飞机、舰船、车辆模型等领域,也可以用于机器人关节的驱动。舵机通常由电机、减速齿轮、传感器、控制电路等部件组成。其中,控制电路用于接收来自控制器(如STM32)的信号,并将信号转换成舵机动作的精确控制。 飞特舵机STM32版本的关键知识点包括: 1. STM32微控制器的特性:STM32系列微控制器基于ARM Cortex-M内核,具有高性能、低功耗的特点,支持多种通信接口,如I2C、SPI、UART等,特别适合于需要多个通信接口的复杂应用场景。 2. 舵机的工作原理:舵机通过PWM(脉冲宽度调制)信号接收控制命令,其控制电路根据PWM信号的宽度转换为电机转动的角度。通过改变PWM信号的周期和宽度,可以实现对舵机转动角度的精确控制。 3. 舵机控制系统的实现方式:FTServo_stm32HAL-main提供了STM32与舵机通信的底层驱动程序,开发者可以通过修改HAL库中的函数来控制PWM信号的输出,从而控制舵机的转动。 4. STM32的HAL库:STM32的硬件抽象层库简化了硬件控制的复杂性,开发者可以在不需要详细了解硬件内部结构的情况下开发应用程序,提高开发效率。 5. 舵机控制的编程技巧:在使用STM32控制舵机时,需要对PWM信号进行精确的时序控制,因此编程者需要掌握相应的编程方法,以确保舵机可以响应输入信号并做出准确的动作。 6. 应用场景:飞特舵机STM32版本适合于要求高精度控制和快速响应的应用场合,如无人机、机器人、自动化设备等。 7. 固件升级与维护:随着技术的发展,可能会有新的固件版本出现,提高舵机的性能或增加新的功能。因此,了解如何升级固件以及固件的维护也是使用飞特舵机STM32版本时需要掌握的知识。 8. STM32开发环境:为了开发基于STM32的舵机控制系统,需要了解并熟悉STM32的开发环境,如Keil uVision、STM32CubeMX、IAR Embedded Workbench等。 9. 故障诊断与调试:在开发过程中,需要对系统进行调试和故障诊断。了解如何使用调试工具,如JTAG/SWD接口调试器、串口打印调试等,对于解决开发中遇到的问题至关重要。 10. STM32的性能优化:为了确保舵机系统的高效运行,开发者需要对STM32的性能进行优化,包括代码优化、电源管理、中断管理等,以确保系统能够长时间稳定运行。 飞特舵机STM32版本的开发和应用涉及微控制器原理、舵机控制技术、编程实践和开发环境等多个方面。对于电子工程师或者自动化控制人员而言,掌握这些知识是进行此类项目开发的基础。
2025-10-19 23:35:14 64KB
1
用proteus仿真温度测量,传感器应用集成式数字温度传感器TC72,基于stm32f103,HAL库。 在程序中,我们将测得温度通过串口输出到终端,可以学习TC72的SPI接口应用,温度输出应用单片机的串口,我们可以学习串口的应用。
2025-10-19 22:20:53 5.28MB stm32 温度传感器
1
磁耦合谐振式无线电能传输电路系统板LCC-S拓扑补偿网络:STM32主控驱动MOS管,谐振补偿与稳压输出至ESP芯片无线传输数据技术,磁耦合谐振式无线电能传输电路系统板LCC-S拓扑补偿网络:STM32主控+ESP通信+稳压输出与WiFi实时传输方案,磁耦合谐振式 无线电能传输电路系统板 LCC-S拓扑补偿网络 发射端电路采用Stm32f103c8t6主控,四路互补带死区的高频PWM与ir2110全桥驱动MOS管。 同时利用LCC器件谐振,所有参数确定和计算由maxwell和simulink计算得出。 接收电路利用S谐振网络补偿。 同时输出电压经过稳压后供给esp芯片,后者将输出电压通过ADC采样后利用2.4G wifi下的MQTT协议传输给电脑 手机端查看,并实时通过数码管显示。 资料见最后一幅图。 stm32和esp8285单片机均板载串口电路,只需一根typec数据线即可上传程序 默认只是相关资料(如果需要硬件请单独指明) ,无线电能传输;电路系统板;LCC-S拓扑补偿网络;磁耦合谐振式;发射端电路;Stm32f103c8t6主控;高频PWM;ir2110全桥驱动MOS管;LC
2025-10-18 00:24:31 13.62MB csrf
1
简易BootLoader实现
2025-10-17 17:30:52 6.5MB BootLoader STM32
1
Altium Designer是一款强大的电子设计自动化(EDA)软件,它整合了电路原理图设计、PCB布局、硬件仿真、PCB制造输出等多个环节,是电子产品设计领域的重要工具。STM32则是由意法半导体(STMicroelectronics)推出的基于ARM Cortex-M内核的微控制器系列,广泛应用在各种嵌入式系统中。STM32元件库则是为了方便Altium Designer用户在设计电路时能够快速准确地添加STM32芯片的原理图符号和PCB封装。 STM32元件库包含了STM32F1系列的大部分芯片,这个系列是STM32家族中的一员,拥有广泛的型号,适用于不同性能和功耗需求的项目。STM32F1系列基于ARM Cortex-M3内核,具有高集成度、低功耗、高性能的特点,常用于工业控制、消费电子、医疗设备等领域。 在Altium Designer中,元件库是至关重要的,它包含了电路设计中所有可能用到的元器件的图形符号和物理封装。原理图符号代表了元器件在电路原理图上的视觉表示,而PCB封装则定义了元器件在实际PCB板上的尺寸和引脚布局。STM32元件库确保了设计者可以准确无误地绘制STM32芯片在电路原理图上的连接,并为后续的PCB布局提供正确的物理信息。 使用Altium Designer STM32元件库有以下几个关键步骤: 1. **导入元件库**:你需要将下载的STM32元件库文件导入到Altium Designer的个人库目录中。这通常涉及解压文件并将其移动到指定的Libraries文件夹下。 2. **打开元件库**:在Altium Designer中,通过“Component Libraries”面板访问新导入的STM32元件库,找到所需的STM32F1系列芯片。 3. **放置元件**:在原理图设计界面,你可以直接拖拽元件库中的STM32符号到图纸上,然后通过属性编辑器设置元器件的具体型号和参数。 4. **验证与连接**:检查每个STM32芯片的引脚分配是否正确,与其他元器件进行电气连接,确保无误。 5. **PCB布局**:在完成原理图设计后,可以进行PCB布局。这时,STM32元件库中的PCB封装将指导你在PCB板上合理安排STM32芯片和其他元器件的位置,保证引脚对应并符合电气规则。 6. **仿真与验证**:在设计完成后,Altium Designer还提供了硬件仿真功能,可以帮助你验证设计的正确性和稳定性,确保STM32芯片能够正常工作。 7. **输出制造文件**:导出Gerber文件和其他制造所需文件,供PCB制造商进行生产。 总结来说,Altium Designer STM32元件库是电路设计者在使用Altium Designer设计STM32相关项目时的重要资源,它简化了STM32芯片的原理图绘制和PCB布局过程,提高了设计效率和准确性。通过熟练掌握这个元件库的使用,设计者可以更好地应对STM32系列在各种嵌入式系统设计中的挑战。
2025-10-16 10:54:47 50KB Altium designer, STM32
1
STM32 CAN(控制器局域网)波特率计算器是一个实用的小工具,专为开发者设计,用于精确计算在STM32微控制器上配置CAN接口时所需的波特率参数。这个计算器可以帮助用户避免因波特率设置不准确导致的通信问题,确保STM32与CAN网络设备之间的数据传输稳定可靠。 在STM32的CAN模块中,波特率的设置涉及到多个参数,包括预分频因子、细分系数以及同步跳宽扩展等。理解这些参数是正确配置CAN波特率的关键: 1. **预分频因子**:STM32的CAN模块内部时钟通常连接到APB1总线,其频率可能为几兆赫兹。预分频因子用于降低此时钟频率,以适应所需的数据传输速率。预分频因子可以是1到1024的任意整数,它将APB1时钟除以指定的数值,得到CAN模块的工作时钟。 2. **细分系数**:细分系数决定了CAN总线的一个位时间被分成多少个部分,通常称为SJW(同步跳跃宽度)、TS1(时间段1)和TS2(时间段2)。SJW用于调整同步错误,TS1和TS2则定义了数据位和标识符的占空比。细分系数的选择需要考虑到总线的电气特性、传输距离和速度要求。 3. **同步跳宽扩展** (SJW):这是CAN协议中的一个关键特性,允许在位边界处进行微小的时间调整,以适应网络中不同设备间的时钟同步误差。SJW的最大值通常不超过细分系数的一半,以保持系统的稳定性。 4. **时间段1 (TS1)** 和 **时间段2 (TS2)**:TS1和TS2定义了位时间的两个主要部分,它们与数据传输中的位错误检测和校正有关。TS1通常包含数据场的一部分,而TS2包含标识符字段。这两个时间段的长度之和加上SJW必须等于一个完整的位时间。 使用STM32 CAN波特率计算器,用户可以输入期望的CAN波特率,然后工具会自动计算出合适的预分频因子、细分系数以及其他相关参数。这样,开发者无需手动进行复杂的计算,简化了配置过程,提高了工作效率。 在实际应用中,用户还应注意以下几点: - 确保STM32的CAN模块时钟源已正确配置,因为这直接影响到波特率的设定。 - 考虑总线上的其他设备,确保所有设备的波特率设置一致,以避免通信问题。 - 在高速CAN网络中,波特率通常较高,而低速CAN网络则较低。选择适当的波特率以满足系统需求并确保网络的可靠性。 - 验证计算结果,通过发送测试消息并观察接收端是否能正确解析,以验证波特率设置的准确性。 STM32 CAN波特率计算器是开发基于STM32的CAN应用时不可或缺的工具,它简化了波特率配置过程,有助于实现高效且可靠的CAN通信。
2025-10-15 16:53:32 442KB STM32 CAN CAN波特率计算器
1
keil mdk 5.41
2025-10-15 09:52:19 859.11MB Keil STM32
1
MPU6050是一款集成六轴运动传感器的微电子机械系统(MEMS)器件,由InvenSense公司生产。它结合了三轴陀螺仪和三轴加速度计,可以测量设备在三维空间中的角速度和线性加速度。这款传感器广泛应用于无人机、机器人、运动设备以及各种需要姿态检测和运动跟踪的场合。 STM32系列是意法半导体(STMicroelectronics)推出的基于ARM Cortex-M内核的微控制器,以其高性能、低功耗、丰富的外设接口和广泛的生态系统而受到青睐。C语言是一种通用的、面向过程的编程语言,具有高效、灵活和可移植性等特点,是嵌入式开发领域最常用的编程语言之一。 MPU6050与STM32的结合,使得开发者能够利用C语言编写控制程序,实现对传感器数据的实时处理和分析。在源代码中,可能包含以下几个关键知识点: 1. **I2C通信协议**:MPU6050通过I2C总线与STM32进行通信。I2C是一种多主机、双向二线制总线,适合在微控制器和外围设备之间传输数据。在代码中,需要设置STM32的I2C接口,初始化相关寄存器,并编写读写函数来与MPU6050交互。 2. **传感器初始化**:源代码会包含初始化MPU6050的步骤,如设置陀螺仪和加速度计的工作模式、采样率、满量程范围等。这通常涉及发送特定的配置命令到传感器。 3. **数据采集**:通过周期性地读取MPU6050的数据寄存器,获取六轴的原始数据(陀螺仪的角速度值和加速度计的加速度值)。这些数据通常是16位二进制格式,需要转换为工程单位。 4. **数据处理**:为了得到有意义的物理信息,如角度、速度或加速度,需要对原始数据进行补偿和校准。这可能包括温度补偿、数字滤波(如低通滤波器)、积分运算等。 5. **姿态解算**:通过组合陀螺仪和加速度计的数据,可以计算出设备的姿态(如角度、角速度和加速度)。常见的解算方法有互补滤波、卡尔曼滤波等。 6. **中断和定时器**:为了实现定时采样或响应特定事件,可能需要配置STM32的中断和定时器功能。 7. **错误处理**:良好的源代码会包含错误检查机制,以处理通信失败、数据溢出或其他异常情况。 8. **应用层接口**:源代码可能提供API函数,使得上层应用程序可以方便地获取和使用传感器数据,如获取当前角度、判断设备翻转状态等。 9. **调试和日志**:为了便于开发和故障排查,源代码可能包含调试信息输出和日志记录功能。 "MPU6050六轴传感器源代码"项目涵盖了嵌入式系统开发的多个方面,从硬件接口通信到传感器数据的处理和应用,涉及了丰富的理论知识和实践经验。通过深入理解和学习这些代码,开发者可以更好地掌握STM32平台上的传感器应用开发。
2025-10-14 15:05:35 6.36MB stm32
1