概述 线索系列游戏中角色与组织之间的关系图 安装 npm i 构建开发/生产 npm run build:dev或npm run build:prod 演示版
2021-10-14 23:04:53 528KB JavaScript
1
Google-Bert模型在医疗领域的运用,实体关系三元组抽取模型(结合网上下载的两个相关模型进行修改) 该资源仅提供模型程序(无医疗相关数据)
2021-10-05 12:06:19 383.19MB bert nlp 三元组抽取
1
Agricultural Knowledge Graph 由于工作原因,该项目已停止维护。因此项目代码仅供参考,项目中包含的数据可免费用于学术等非商业用途。 相关工作请引用paper: AgriKG: An Agricultural Knowledge Graph and Its Applications[C]. DASFAA (3) 2019: 533-537 项目介绍: 本项目是上海市《农业信息服务平台及农业大数据综合利用研究》子课题《上海农业农村大数据共享服务平台建设和应用》的研究成果。 该课题是由上海市农业委员会信息中心主持,以“致富农民、服务市民、提高行政管理效能”为目标,充分发挥大数据在农业农村发展中的重要功能和巨大潜力,重点建设上海市级农业农村大数据中心,促进信息资源的共建共享和创新应用。 华东师范大学数据科学与工程学院(以下简称华师大数据学院)作为课题主要参与单位以实现智慧
1
关系提取中的位置感知注意力RNN模型 此存储库包含PyTorch代码,用于纸上的。 TACRED数据集:有关TAC关系提取数据集的详细信息可以在上找到。 要求 Python 3(在3.6.2上测试) PyTorch(在1.0.0上测试) 解压缩,wget(仅用于下载) 制备 首先,从斯坦福大学网站下载和解压缩GloVe载体,方法如下: chmod +x download.sh; ./download.sh 然后使用以下方法准备词汇和初始单词向量: python prepare_vocab.py dataset/tacred dataset/vocab --glove_dir data
1
论文《Joint Extraction of Entities and Relations Based on a Novel Tagging Scheme》的代码实现
2021-09-13 10:14:19 212KB Extraction Entity Relation
1
PowerDesigner概念模型(ER图)中关系(Relation)的超详细说明及案例
2021-09-09 14:12:29 11KB powerdesigne E-R模型 案例
1
运行该项目的模型训练和模型预测脚本需要准备BERT中文版的模型数据,下载网址为: 。   利用笔者自己收集的3881个样本,对人物关系抽取进行尝试。人物关系共分为14类,如下: { "unknown": 0, "夫妻": 1, "父母": 2, "兄弟姐妹": 3, "上下级": 4, "师生": 5, "好友": 6, "同学": 7, "合作": 8, "同人": 9, "情侣": 10, "祖孙": 11, "同门": 12, "亲戚": 13 }   人物关系类别频数分布条形图如下:   模型结构: BERT + 双向GRU + Attention + FC   模型训练效果: # 训练集(train), loss: 0.0260, acc: 0.9941 # 最终测试集(test), loss: 0.9505, acc:
2021-09-03 20:56:57 690KB Python
1
DoTAT: A Domain-oriented Text Annotation Tool East China University of Science and Technology - NLP [华东理工大学-自然语言处理与大数据挖掘实验室] Attention 该工具已于2020年获得软件著作权,证书号:软着登字第5885316号,如需二次开发使用则要在项目中着重标明来源ECUST-NLP! Notification 在线试用版网站(a live demo website): An administrator account: Username:ecust Password:ecustlab301 A typical annotation process using DoTAT may include the following five steps: (1) Defi
1
我们提供NYT数据集,该数据集一共包含233081实体对,由FreeBase对齐,关系数量为57(如果使用53关系的可自行过滤多余的关系及句子)。
2021-08-23 22:31:11 72.68MB 远程监督关系抽取 distant supervis NLP
1
BRCNN-Relation-Extraction.pdf
2021-08-20 09:14:31 1.08MB 知识图谱