AMD自适应计算致力于营造一个包容性的工作环境,让员工、客户以及合作伙伴能够感到受到欢迎并且得到尊重。这一愿景的实现包括从产品和宣传资料中去除不具包容性的语言,并启动内部计划,以消除可能排斥某些群体或强化历史偏见的语言,这包括软件和知识产权中的术语。在努力改进并适应行业标准的同时,可能会在旧产品中发现不具包容性的语言。为了获得更多的信息,可以点击相关链接。 本用户指南主要介绍UltraScale架构及其配置。该架构的简介涉及UltraScale FPGA系列的概述和家族之间的差异。文档还包括与前几代产品的区别的部分。随着行业标准的不断变化,AMD正致力于更新其产品和资料,以反映更加包容和公平的语言使用。在实施这些更改的过程中,可能会在某些旧产品中遇到不具包容性的语言,但随着时间的推移,这些情况将得到解决。 第1章的简介部分强调了对于包容性的承诺,并概述了UltraScale架构的基础概念。对于UltraScale FPGA系列而言,文档提供了不同FPGA家族之间的差异性描述。同时,对于UltraScale系列与先前产品的不同之处,文档也进行了阐述。文档内容包括了诸如旧产品中可能存在的不包容性语言和如何去适应行业发展标准的相关信息。用户被引导至一个链接以获取更详细的说明。 用户指南详细探讨了UltraScale架构的核心内容,包括但不限于架构概览、家族差异、以及与之前产品线的对比。这一部分是整个指南的重要组成部分,它不仅说明了UltraScale的架构特性,也提供了一种认识新旧技术差异的方法。文档还包含了如何处理和更新资料以保证语言的包容性,并提供了关于改进进展的最新信息。指南的此部分在介绍新型FPGA架构的同时,也强调了对于产品和语言持续改进的重要性。 用户指南针对UltraScale架构提供了全面的指导,包含了技术更新、语言改进以及产品发展等方面。这不仅为读者提供了学习和了解最新UltraScale架构的机会,还让他们能够对FPGA的技术进步有一个全面的理解。通过详细地介绍新架构的特性、产品间的差异以及与前代产品的比较,用户指南帮助用户理解了整个架构的全貌,并为将来的技术改进和产品更新奠定了基础。
2026-01-14 11:03:31 6.79MB FPGA
1
Aurora 8B/10B是一种高速串行链路协议,广泛用于FPGA(现场可编程门阵列)之间的通信。它通过将8位数据编码成10位传输码,以降低数据传输过程中的错误率。Aurora 8B/10B协议专为在板级和背板应用中提供高性能、低延时的串行连接而设计。 本文档是Aurora 8B/10B协议的功能模型用户指南,版本号UG058,出版日期为2011年3月31日。该用户指南提供了使用Xilinx公司提供的Aurora 8B/10B协议功能模型时所需的技术信息和指导。文档为中英文对照版,左侧英文、右侧中文。 用户指南的目的是帮助用户理解如何在FPGA设计中集成和使用Aurora 8B/10B协议功能模型。文档中包含了关于如何配置、模拟、验证Aurora 8B/10B链路的信息,并提供了详尽的示例代码和设计指导。 Xilinx公司对这份文档的内容不提供任何形式的明示或暗示的保证,用户在实施基于这些信息的设计时,需自行获得所需的任何权利,并负责所有规格可能在未通知的情况下发生变化。Xilinx明确拒绝任何形式的保证,包括但不限于对信息充分性或基于此信息实施的产品免受侵权索赔,以及任何隐含的适销性保证或特定用途的适用性声明。 此外,未经Xilinx事先书面同意,用户不得以任何形式复制、再现、分发、重新发布、下载、显示、发布或传输本文档中的任何信息。所有版权、商标和知识产权均归Xilinx公司所有,或由其各自所有者拥有。 文档中还包含了修订历史记录,记录了文档自创建以来的各个修订版本的变化详情。 Aurora 8B/10B协议因其高性能和低错误率,在高速数据通信领域中非常受欢迎,尤其在需要高带宽和低延迟的应用场景中。FPGA设计者通常使用它来实现高吞吐量的硬件加速解决方案或高精度的数据处理需求。尽管Xilinx提供了产品文档,但是产品在使用过程中的任何侵权责任,用户需要自行承担。因此,设计者在实施时需要格外注意知识产权的问题,避免潜在的法律风险。 用户指南中的信息是关于如何在Xilinx FPGA平台上实现Aurora 8B/10B协议的详细指南,设计者可以据此在自己的项目中应用这一协议。而Xilinx公司提供的声明和版权声明,则说明了公司对产品文档的立场,以及用户在使用这些信息时的权利和义务。整个文档的目的是为了帮助用户理解Aurora 8B/10B功能模型,并在使用Xilinx FPGA设计中实现该协议。
2026-01-14 07:51:51 3.6MB FPGA
1
《基于FPGA的串口程序详解》 在现代电子系统设计中,Field Programmable Gate Array(FPGA)因其灵活性和高性能而被广泛应用。本篇文章将深入探讨一个已验证的基于FPGA的串口程序,这对于那些希望利用FPGA实现串行通信的工程师来说,无疑是一份宝贵的资源。 串口,或称为UART(通用异步收发传输器),是设备间进行串行通信的一种常见接口。在FPGA设计中,实现串口功能可以让我们与外部世界如微控制器、计算机和其他硬件设备进行数据交换。通过VHDL(Very High Speed Integrated Circuit Hardware Description Language)这一硬件描述语言,我们可以创建定制化的串口逻辑,以满足特定的应用需求。 VHDL是一种强大的编程语言,它允许我们精确地描述数字系统的逻辑功能。在FPGA中实现串口时,VHDL代码会定义波特率发生器、数据收发器、帧同步信号以及错误检测等功能。波特率发生器用于设定数据传输的速度,数据收发器则处理数据的发送和接收,帧同步信号确保数据在正确的时间发送和接收,而错误检测则能检查数据传输过程中的完整性。 在给出的文件列表中,“FPGA-UART”可能是VHDL源代码文件,包含了实现上述功能的具体逻辑设计。此文件可能包括了波特率发生器模块、数据发送和接收模块、帧同步逻辑以及错误检测电路等部分。理解并学习这些代码可以帮助我们更好地掌握如何在FPGA上实现串行通信。 另一方面,“VB-FPGA串行通讯”可能是一个Visual Basic应用程序,用于与FPGA上的串口进行通信测试。VB提供了一种便捷的方式来编写控制软件,通过串口与硬件进行交互。这个程序可能会包含发送和接收数据的函数,以及显示和解析接收到的数据的界面。通过运行此程序并与FPGA进行通信,我们可以验证FPGA上的串口设计是否正确工作。 这个基于FPGA的串口程序为学习和实践FPGA串口通信提供了一个实用的实例。通过研究VHDL代码和VB应用程序,我们可以了解FPGA设计中的串口实现细节,同时也能提升我们在硬件和软件之间的协同开发能力。对于希望在嵌入式系统、物联网或其他相关领域工作的工程师来说,这是一次宝贵的学习机会。
2026-01-13 19:46:00 304KB FPGA 串口
1
DDS使用的ROM初始化文件
2026-01-13 19:10:33 553KB fpga/cpld
1
本文详细介绍了使用FPGA实现雷尼绍BISS-C协议编码器的Verilog方案。该方案支持18/26/32/36bit配置,最高10M时钟频率,具有高度灵活性和可移植性。通过parameter参数化设计,可以轻松切换不同位宽模式,且资源消耗仅增加23%。特别值得一提的是CRC并行计算技术,将传统串行CRC的计算时间压缩到一个时钟周期,显著提升了实时性。模块化设计支持多路编码器同时读取,四路同时工作时每路时钟可达9.8MHz。方案还包含全局异步复位设计、无IP核依赖和动态生成时序约束等优化,便于在不同平台移植。最后分享了MA线响应时序的踩坑经验,通过状态机实现的超时检测模块有效避免了死锁问题。 在现代电子工程领域,现场可编程门阵列(FPGA)因其灵活性和高性能而在设计复杂的数字系统中占据着重要的位置。本文讨论了如何利用FPGA技术来实现雷尼绍BISS-C协议编码器的设计,该设计采用了Verilog硬件描述语言进行编码,并提供了一种高效的实现方案。 BISS-C协议是一种工业通信协议,广泛应用于各类工业控制系统,特别是在位置反馈系统中。此协议编码器需要具备高度的灵活性和可移植性,以满足不同工业应用场景的需求。FPGA实现方案支持多种配置,包括18位、26位、32位和36位模式,能够适应不同的数据处理需求。设计时钟频率高达10MHz,保证了编码器在高速数据传输中的可靠性和稳定性。 参数化设计是该方案的核心特点之一。通过使用Verilog的parameter语句,设计者能够定义模块中的参数,从而允许在不同位宽模式间轻松切换,而资源消耗的增加非常有限,仅为23%。这种设计方式大大增强了设计的灵活性和可重用性,便于工程师针对不同的应用场合快速调整和优化FPGA资源的配置。 为了进一步提升系统的实时性能,该方案采用了CRC并行计算技术。在传统的串行计算中,CRC校验往往需要多个时钟周期才能完成,这在高频率的数据传输中可能成为系统性能的瓶颈。本方案将CRC计算压缩到一个时钟周期内完成,大幅提高了处理速度,并且降低了潜在的延迟风险。 模块化设计是方案的另一项重要特性,它支持多路编码器同时读取数据。在测试中,当有四路编码器同时工作时,每路编码器仍然能够达到9.8MHz的时钟频率,这对于要求高通道并行处理的工业应用来说是一个巨大的优势。 此外,方案中还包含了全局异步复位设计,这意味着系统能够在没有同步时钟的情况下完成复位操作,从而增加了设计的健壮性。方案不依赖于任何IP核,这意味着设计者无需支付额外的IP核使用费用,并且消除了对第三方IP核供应商的依赖。同时,动态生成时序约束也是方案中的一项优化,使得设计能够更容易地适应和移植到不同的硬件平台。 在软件开发方面,作者还分享了MA线响应时序方面的经验,这通常是设计过程中容易遇到的陷阱。通过使用状态机实现的超时检测模块,有效地避免了死锁问题,保证了编码器在特定条件下也能正常工作。 本文介绍的基于FPGA的BISS-C协议编码器实现方案,展示了如何利用Verilog语言在硬件层面解决工业通信协议中的实际问题,体现了高性能、高可靠性和高效率的设计理念。通过模块化设计、参数化配置和先进的CRC计算技术,该方案不仅提高了编码器的性能和可靠性,还具备了较强的可移植性,为工程师提供了灵活的硬件设计参考。
2026-01-13 11:56:55 30KB 软件开发 源码
1
在现代电子系统设计中,FPGA(现场可编程门阵列)由于其灵活性和高性能而广泛应用于各种工业和通信领域。Xilinx是全球领先的FPGA芯片供应商之一,其产品广泛应用于高速数据处理、复杂算法的硬件加速以及特殊应用场景的定制解决方案中。特别是随着物联网技术的快速发展,FPGA在实现复杂通信协议方面展现出了独特的优势。 CAN(Controller Area Network)总线是一种被广泛应用的,用于微控制器和设备之间的通信网络。它最初由德国汽车公司Bosch在1980年代初期设计,主要用于汽车内部各部件之间的通信,但因其高效性和可靠性,后来也被广泛应用于工业自动化、医疗设备和其他多种应用中。CAN总线支持多主机操作,具有非破坏性的仲裁方法,能够有效地解决数据冲突问题。 本资源所提供的Verilog源码是为了在Xilinx FPGA上实现CAN总线通信功能。Verilog是一种硬件描述语言(HDL),广泛应用于电子系统的设计与描述,它允许设计者通过编写代码来描述硬件电路的逻辑功能。在本源码中,利用Xilinx提供的CAN IP核来实现CAN总线协议的底层通信功能,这样做的好处是利用了成熟的设计模块,可以大幅度缩短设计时间,同时保证了通信功能的可靠性。 Vivado是Xilinx推出的一款集设计输入、综合、实现以及设备编程于一体的设计套件,其对7系列及以上的FPGA芯片提供了全面支持。这意味着,通过Vivado开发环境,设计者能够将本资源提供的源码在Xilinx FPGA的7系列以及更新的系列芯片上进行开发和部署。通过Vivado提供的图形化界面和丰富的IP核库,开发者能够更加便捷地进行设计调试和优化。 本资源中,源码被设计得直接可用,并且代码中包含清晰的注释。这意味着即使是初学者也能够快速理解和上手使用。注释的详尽程度直接关系到代码的可读性,对于维护和后续升级至关重要。源码的可用性对于那些希望在自己的项目中快速实现CAN总线通信的设计者来说,无疑是一个巨大的优势。 文件名称列表中包含多个文件,它们可能包含了详细的引言、源码分析以及在通信领域中的应用解析。文件"引言近年来随着物联网技术的快速发展总线.doc"可能详细介绍了物联网技术的发展趋势,以及总线技术在其中的重要角色。"在通信领域的应用与源码解析随着科技的快速发展总.txt"和"与实现总线通信源码分析一引言随着现代工业自动化的发.txt"可能提供了源码的具体实现方法和在通信领域中的应用案例分析。此外,还有多个与实现总线通信相关的文件,这些文件可能是对总线通信技术、原理及其在现代嵌入式系统中的应用的深入探讨。 本资源是一个针对Xilinx FPGA CAN总线通信实现的综合解决方案,它提供了一个直接可用、注释清晰的Verilog源码,通过Vivado设计环境支持7系列及更新的FPGA芯片,非常适合需要在物联网、工业自动化等场景中实现高效可靠通信的设计者使用。
2026-01-12 09:43:11 142KB
1
表面波电磁声传感器需要电脉冲串来激励,介绍基于FPGA的多通道脉冲串信号发生器的设计方法。利用FPGA技术,可以在应用现场调节脉冲频率、改变脉冲串的占空比、改变脉冲串的长度,以期获得最大幅值的回波信号用以提高检测灵敏度。设计完成后利用仿真软件对其进行模拟仿真,验证了该方法的可行性。
2026-01-10 13:34:36 304KB 电磁超声 无损检测 FPGA
1
本文详细介绍了如何使用FPGA驱动无源蜂鸣器播放音乐《花海》。文章首先介绍了蜂鸣器的分类,包括有源蜂鸣器和无源蜂鸣器的区别,重点说明了无源蜂鸣器通过PWM方波驱动实现不同音调的原理。接着讲解了简谱的基本知识,包括音符时值、简谱名及其对应频率。在程序设计部分,详细阐述了如何调用ROM IP核储存简谱时间和频率计数值,以及PWM波的生成方法和ROM地址的更新机制。最后提供了完整的RTL代码和仿真测试模块,并分享了调试过程中遇到的问题和解决方案。 文章首先介绍了蜂鸣器的分类,包括有源蜂鸣器和无源蜂鸣器的区别。有源蜂鸣器内部自带振荡电路,只需输入直流电压即可发出声音,而无源蜂鸣器则需要外部提供特定频率的交流电才能发声。在使用无源蜂鸣器的过程中,通过PWM(脉冲宽度调制)方波的驱动来实现不同音调的产生,这是因为音调的高低由方波的频率决定,而声音的强弱由方波的占空比来控制。 文章进一步讲解了简谱的基本知识,包括音符的时值、简谱名及其对应频率。简谱中的每个音符都有其特定的时值,比如全音符、二分音符、四分音符等,这些音符在实际播放音乐时,需要按照规定的时值来确定其持续的时间长短。另外,每个音符都有对应的频率,简谱名与频率之间的关系是固定且可以查询的。 在程序设计部分,文章详细介绍了如何调用ROM(Read-Only Memory,只读存储器)IP核储存简谱时间和频率计数值。ROM在这里用于存储每个音符的播放时间长度和相应的频率值,这些值会在音乐播放时被读取出来。同时,文章也讲解了PWM波的生成方法和ROM地址的更新机制,确保在音乐播放过程中,能够及时地切换到正确的音符频率和持续时间。 文章最后提供了完整的RTL(Register Transfer Level,寄存器传输级)代码和仿真测试模块。RTL代码是用于FPGA编程的一种高层次硬件描述语言,它描述了硬件电路的行为和结构。仿真测试模块则是在正式烧录到FPGA之前,用于验证RTL代码正确性的关键步骤。通过仿真测试,开发者可以发现并修正代码中的错误,确保硬件设计达到预期的功能和性能。 此外,文章还分享了调试过程中遇到的问题和解决方案。在FPGA开发和硬件调试的过程中,经常会遇到各种预料之外的问题,比如音质不佳、播放中断、时序不准确等。作者通过深入分析这些问题产生的原因,提出了相应的解决办法,并对设计过程中的细节进行了优化,从而提高了整个系统的稳定性和音乐播放的品质。 文章还提到了有关FPGA开发和嵌入式系统硬件设计的专业知识,这些都是实现音乐播放的关键技术。FPGA因其出色的并行处理能力和灵活的可编程性,使得它在嵌入式系统开发中被广泛应用于信号处理、逻辑控制等领域。了解这些技术背景,对于理解整个FPGA驱动蜂鸣器播放音乐的实现过程至关重要。 文章通过分享实际的代码示例和测试结果,为读者提供了一个完整的项目案例,不仅加深了理论知识的理解,也增加了实践操作的经验。
2026-01-10 09:48:03 24KB FPGA开发 嵌入式系统 硬件设计
1
内容概要:本文详细介绍了使用Verilog手写实现FPGA以太网接口的设计,涵盖MAC层、TCP/IP协议栈的关键技术和优化方法。具体包括CRC校验、TCP状态机、AXI Stream封装、物理层适配等内容。文中提供了大量代码片段展示实现细节,并讨论了调试过程中遇到的问题及其解决方案。此外,还展示了通过Python进行上位机通信的实际效果。 适合人群:具备一定硬件设计基础,尤其是对FPGA和网络协议感兴趣的工程师和技术爱好者。 使用场景及目标:适用于需要深入了解FPGA网络协议栈实现原理的研究人员,以及希望在嵌入式系统中集成自定义网络协议的应用开发者。主要目标是掌握从物理层到应用层的完整网络协议栈设计方法。 其他说明:文章不仅提供理论讲解,还包括具体的代码实现和调试技巧,帮助读者更好地理解和实践。同时,附带的抓包实测指南、协议原理解析等资料为初学者提供了全面的学习资源。
2026-01-10 01:10:51 123KB FPGA Verilog TCP/IP协议栈 Stream
1
内容概要:本文详细介绍了基于FPGA的自适应滤波器设计及其多种算法实现,包括LMS、NLMS、RLS以及分数阶FxLMS算法。文中不仅涵盖了FIR和IIR滤波器的具体实现方法,还深入探讨了系统架构设计、状态机控制、乘累加操作优化、动态步长策略、并行计算结构、次级路径估计模块设计等方面的技术细节。此外,文章还分享了一些实用的资源优化小技巧,如使用分布式RAM替代块状RAM、采用转置型滤波器结构等。 适合人群:从事数字信号处理、嵌入式系统开发、FPGA设计等相关领域的工程师和技术爱好者。 使用场景及目标:适用于需要高效实现自适应滤波器的应用场景,如噪声消除、回声消除等。目标是帮助读者掌握自适应滤波器的设计原理和实现方法,提高实际项目的开发效率和性能。 其他说明:文章提供了丰富的代码片段和实践经验,有助于读者更好地理解和应用相关技术。同时,强调了在硬件平台上实现自适应滤波器相较于软件仿真的优势。
2026-01-09 09:36:29 1.71MB FPGA RLS算法
1