### 3GPP TS 36.300 V10.2.0协议解析 #### 一、概述 3GPP TS 36.300 V10.2.0是3GPP(第三代合作伙伴项目)为Evolved Universal Terrestrial Radio Access (E-UTRA) 和 Evolved Universal Terrestrial Radio Access Network (E-UTRAN)制定的技术规范文档,该版本发布于2010年12月。本文档主要涉及E-UTRA和E-UTRAN的整体描述,特别是第二阶段(Stage 2)的设计和技术细节。 #### 二、关键词解释 - **UMTS**:即通用移动通信系统,是一种3G移动通信技术标准。 - **Stage 2**:指在UMTS标准中的设计阶段,通常涉及系统架构、接口定义等高级别描述。 - **Radio**:在此文中特指无线电接入技术。 - **Architecture**:架构,在这里是指E-UTRA/E-UTRAN系统的整体结构设计。 #### 三、技术规范概览 ##### 1. 范围(Scope) 该文档规定了E-UTRA和E-UTRAN的整体架构及其功能划分。其目标是为未来的开发工作提供指导,并确保与现有UMTS标准的一致性和兼容性。 ##### 2. 引用(References) 文档中引用了一系列相关的技术规范和文档,这些规范和文档为理解本文档提供了必要的背景信息和支持。 ##### 3. 定义、符号和缩写(Definitions, symbols and abbreviations) 文档中定义了一系列术语、符号和缩写,以便清晰地传达技术细节。例如,“E-UTRA”指的是演进型通用陆地无线接入技术,“E-UTRAN”指的是演进型通用陆地无线接入网络。 - **3.1 定义(Definitions)** 这部分定义了与E-UTRA/E-UTRAN相关的关键概念和技术术语,如“用户平面(User plane)”、“控制平面(Control plane)”等。 - **3.2 缩写(Abbreviations)** 包括了一系列重要的缩写词,比如E-UTRA、E-UTRAN、HNB(Home Node B)、HNB-GW(HNB Gateway)等。 ##### 4. 整体架构(Overall architecture) 这部分详细描述了E-UTRA/E-UTRAN的整体架构,包括功能性划分、无线电协议架构等方面。 - **4.1 功能性划分(Functional Split)** 描述了E-UTRAN内部的功能模块划分以及它们之间的交互方式。这种划分对于优化性能和简化网络设计至关重要。 - **4.2 空缺(Void)** 文档中提到的部分空缺部分,可能是由于后续版本会进一步补充或修改的地方。 - **4.3 无线电协议架构(Radio Protocol architecture)** - **4.3.1 用户平面(User plane)** 用户平面处理数据流的传输,包括数据包的封装和解封装、加密等功能。 - **4.3.2 控制平面(Control plane)** 控制平面负责信令消息的传输,管理无线资源,协调网络操作。 - **4.4 同步(Synchronization)** 讨论了E-UTRA/E-UTRAN中的同步机制,确保所有节点之间的时间同步,这对于高效的数据传输至关重要。 - **4.5 IP分片(IP fragmentation)** 提到了IP分片的问题,这是在网络层对大型数据包进行分割以适应不同网络设备的MTU(最大传输单元)限制的过程。 - **4.6 支持HeNBs(Support of HeNBs)** HeNBs是指家庭基站(Home Node Bs),这部分讨论了如何支持小型基站的集成,以增强网络覆盖和服务质量。 #### 四、总结 3GPP TS 36.300 V10.2.0是关于E-UTRA/E-UTRAN的关键技术规范之一,它详细阐述了这些技术的核心架构和设计原则。通过深入研究这份文档,可以更好地理解4G/LTE网络的工作原理和技术细节。此外,该文档还为后续版本的技术发展奠定了基础,并为网络运营商提供了实现标准的一致性指南。
2025-12-24 19:07:05 1.85MB UMTS stage radio architecture
1
1 Basic Techniques 17 1.1 Intuitive Compression 17 1.2 Run-Length Encoding 22 1.3 RLE Text Compression 23 1.4 RLE Image Compression 27 1.5 Move-to-Front Coding 37 1.6 Scalar Quantization 40 1.7 Recursive Range Reduction 42 2 Statistical Methods 47 2.1 Information Theory Concepts 48 2.2 Variable-Size Codes 54 2.3 Prefix Codes 55 2.4 Tunstall Code 61 2.5 The Golomb Code 63 2.6 The Kraft-MacMillan Inequality 71 2.7 Shannon-Fano Coding 72 2.8 Huffman Coding 74 2.9 Adaptive Huffman Coding 89 2.10 MNP5 95 2.11 MNP7 100 2.12 Reliability 101 2.13 Facsimile Compression 104 2.14 Arithmetic Coding 112 xxii Contents 2.15 Adaptive Arithmetic Coding 125 2.16 The QM Coder 129 2.17 Text Compression 139 2.18 PPM 139 2.19 Context-Tree Weighting 161 3 Dictionary Methods 171 3.1 String Compression 173 3.2 Simple Dictionary Compression 174 3.3 LZ77 (Sliding Window) 176 3.4 LZSS 179 3.5 Repetition Times 182 3.6 QIC-122 184 3.7 LZX 187 3.8 LZ78 189 3.9 LZFG 192 3.10 LZRW1 195 3.11 LZRW4 198 3.12 LZW 199 3.13 LZMW 209 3.14 LZAP 212 3.15 LZY 213 3.16 LZP 214 3.17 Repetition Finder 221 3.18 UNIX Compression 224 3.19 GIF Images 225 3.20 RAR and WinRAR 226 3.21 The V.42bis Protocol 228 3.22 Various LZ Applications 229 3.23 Deflate: Zip and Gzip 230 3.24 LZMA and 7-Zip 241 3.25 PNG 246 3.26 XML Compression: XMill 251 3.27 EXE Compressors 253 3.28 CRC 254 3.29 Summary 256 3.30 Data Compression Patents 256 3.31 A Unification 259 Contents xxiii 4 Image Compression 263 4.1 Introduction 265 4.2 Approaches to Image Compression 270 4.3 Intuitive Methods 283 4.4 Image Transforms 284 4.5 Orthogonal Transforms 289 4.6 The Discrete Cosine Transform 298 4.7 Test Images 333 4.8 JPEG 337 4.9 JPEG-LS 354 4.10 Progressive Image Compression 360 4.11 JBIG 369 4.12 JBIG2 378 4.13 Simple Images: EIDAC 389 4.14 Vector Quantization 390 4.15 Adaptive Vector Quantization 398 4.16 Block Matching 403 4.17 Block Truncation Coding 406 4.18 Context-Based Methods 412 4.19 FELICS 415 4.20 Progressive FELICS 417 4.21 MLP 422 4.22 Adaptive Golomb 436 4.23 PPPM 438 4.24 CALIC 439 4.25 Differential Lossless Compression 442 4.26 DPCM 444 4.27 Context-Tree Weighting 449 4.28 Block Decomposition 450 4.29 Binary Tree Predictive Coding 454 4.30 Quadtrees 461 4.31 Quadrisection 478 4.32 Space-Filling Curves 485 4.33 Hilbert Scan and VQ 487 4.34 Finite Automata Methods 497 4.35 Iterated Function Systems 513 4.36 Cell Encoding 529 xxiv Contents 5 Wavelet Methods 531 5.1 Fourier Transform 532 5.2 The Frequency Domain 534 5.3 The Uncertainty Principle 538 5.4 Fourier Image Compression 540 5.5 The CWT and Its Inverse 543 5.6 The Haar Transform 549 5.7 Filter Banks 566 5.8 The DWT 576 5.9 Multiresolution Decomposition 589 5.10 Various Image Decompositions 589 5.11 The Lifting Scheme 596 5.12 The IWT 608 5.13 The Laplacian Pyramid 610 5.14 SPIHT 614 5.15 CREW 626 5.16 EZW 626 5.17 DjVu 630 5.18 WSQ, Fingerprint Compression 633 5.19 JPEG 2000 639 6 Video Compression 653 6.1 Analog Video 653 6.2 Composite and Components Video 658 6.3 Digital Video 660 6.4 Video Compression 664 6.5 MPEG 676 6.6 MPEG-4 698 6.7 H.261 703 6.8 H.264 706 7 Audio Compression 719 7.1 Sound 720 7.2 Digital Audio 724 7.3 The Human Auditory System 727 7.4 WAVE Audio Format 734 7.5 μ-Law and A-Law Companding 737 7.6 ADPCM Audio Compression 742 7.7 MLP Audio 744 7.8 Speech Compression 750 7.9 Shorten 757 7.10 FLAC 762 7.11 WavPack 772 7.12 Monkey’s Audio 783 7.13 MPEG-4 Audio Lossless Coding (ALS) 784 7.14 MPEG-1/2 Audio Layers 795 7.15 Advanced Audio Coding (AAC) 821 7.16 Dolby AC-3 847 Contents xxv 8 Other Methods 851 8.1 The Burrows-Wheeler Method 853 8.2 Symbol Ranking 858 8.3 ACB 862 8.4 Sort-Based Context Similarity 868 8.5 Sparse Strings 874 8.6 Word-Based Text Compression 885 8.7 Textual Image Compression 888 8.8 Dynamic Markov Coding 895 8.9 FHM Curve Compression 903 8.10 Sequitur 906 8.11 Triangle Mesh Compression: Edgebreaker 911 8.12 SCSU: Unicode Compression 922 8.13 Portable Document Format (PDF) 928 8.14 File Differencing 930 8.15 Hyperspectral Data Compression 941 Answers to Exercises 953 Bibliography 1019 Glossary 1041 Joining the Data Compression Community 1067 Index 1069 本书《Data Compression: The Complete Reference, Fourth Edition》为数据压缩领域的权威参考资料,涵盖了数据压缩的基础理论与实践应用。作者David Salomon与合作者Giovanni Motta和David Bryant共同编写,适用于计算机科学家、工程师以及对数据压缩技术感兴趣的读者。 ### 1. 基础技术 #### 1.1 直观压缩(Intuitive Compression) 介绍了数据压缩的基本概念,解释了如何通过数据结构简化来减少数据量。 #### 1.2 逐行编码(Run-Length Encoding, RLE) 详细阐述了RLE的原理和应用,特别是在文本和图像数据压缩中的作用。 #### 1.3 文本压缩(RLE Text Compression) 文本压缩利用RLE原理,通过统计文本中连续出现的字符来压缩文本数据。 #### 1.4 图像压缩(RLE Image Compression) 图像压缩利用RLE原理,通过统计图像中连续颜色或像素值来压缩图像数据。 #### 1.5 移动至前端编码(Move-to-Front Coding) 一种变换编码技术,通过将输入数据中重复出现的元素移至数据流的前端来提高压缩率。 #### 1.6 标量量化(Scalar Quantization) 将连续信号转换为离散信号的过程,以减少数据量。 #### 1.7 递归范围缩减(Recursive Range Reduction) 一种动态调整量化范围的方法,用于进一步减小数据量。 ### 2. 统计方法 #### 2.1 信息论概念(Information Theory Concepts) 介绍了信息论的基本原理,包括信息熵、互信息等核心概念。 #### 2.2 变长编码(Variable-Size Codes) 变长编码通过为不同长度的符号分配不同大小的编码来减少数据量。 #### 2.3 前缀编码(Prefix Codes) 前缀编码是变长编码的一种,其中没有码字是其他码字的前缀。 #### 2.4 Tunstall编码 一种基于统计模型的最优前缀编码算法。 #### 2.5 Golomb编码(The Golomb Code) 一种用于算术编码的技巧,特别适用于几何分布的数据。 #### 2.6 Kraft-MacMillan不等式(The Kraft-MacMillan Inequality) 用于验证前缀码是否有效的数学不等式。 #### 2.7 Shannon-Fano编码(Shannon-Fano Coding) 一种基于字符概率分布构建最优前缀编码的方法。 #### 2.8 Huffman编码(Huffman Coding) 一种广泛使用的最优前缀编码技术,通过构建哈夫曼树来实现压缩。 #### 2.9 自适应Huffman编码(Adaptive Huffman Coding) Huffman编码的一种变体,可以动态地适应数据的变化。 #### 2.10 MNP5和MNP7 MNP5和MNP7是用于调制解调器的数据压缩协议。 #### 2.11 可靠性(Reliability) 在压缩过程中确保数据完整性的方法。 #### 2.12 传真压缩(Facsimile Compression) 传真数据压缩的特定方法。 #### 2.13 算术编码(Arithmetic Coding) 一种高效的数据压缩技术,通过使用实数来表示数据序列。 #### 2.14 自适应算术编码(Adaptive Arithmetic Coding) 算术编码的自适应版本,可动态调整模型以适应数据变化。 #### 2.15 QM编码器(The QM Coder) IBM开发的一种用于图像压缩的算术编码方法。 #### 2.16 文本压缩(Text Compression) 利用统计模型和语言特性来压缩文本数据。 #### 2.17 PPM(Prediction by Partial Matching) 一种预测编码方法,用于文本和数据压缩。 #### 2.18 上下文树加权(Context-Tree Weighting) 一种用于压缩数据的上下文模型技术。 ### 3. 字典方法 #### 3.1 字符串压缩(String Compression) 介绍了基本的字符串压缩方法和理论。 #### 3.2 简单字典压缩(Simple Dictionary Compression) 通过替换频繁出现的字符串来减少数据量。 #### 3.3 LZ77(滑动窗口) LZ77压缩算法的描述,是一种基于字典的压缩方法。 #### 3.4 LZSS LZSS是LZ77的改进版本,更有效地使用字典。 #### 3.5 重复时间(Repetition Times) 描述了如何编码重复出现的序列。 #### 3.6 QIC-122 一种用于磁带驱动器的压缩算法。 #### 3.7 LZX 一种用于Microsoft CAB文件的压缩算法。 #### 3.8 LZ78 LZ78压缩算法的原理和应用。 #### 3.9 LZFG LZFG是一种流式压缩算法,适合于动态数据。 #### 3.10 LZRW1 和 LZRW4 这两种是LZ77的变体,主要用于内存数据压缩。 #### 3.11 LZW LZW压缩算法广泛应用于多种压缩标准,如GIF和TIFF。 #### 3.12 LZMW LZMW是一种在微处理器上实现的高效字典编码方法。 #### 3.13 LZAP LZAP是LZW的改进版本,具有更好的压缩效率。 #### 3.14 LZY LZY是一种用于文本压缩的高效算法。 #### 3.15 LZP LZP结合了预测编码和字典编码。 #### 3.16 Repetition Finder 用于识别重复数据序列的技术。 #### 3.17 UNIX压缩(UNIX Compression) UNIX系统下常用的数据压缩工具。 #### 3.18 GIF图像(GIF Images) GIF图像格式使用LZW压缩算法。 #### 3.19 RAR和WinRAR RAR和WinRAR是广泛使用的文件压缩工具。 #### 3.20 V.42bis协议 V.42bis是一种调制解调器使用的压缩协议。 #### 3.21 各种LZ应用(Various LZ Applications) 介绍了LZ系列算法在不同领域的应用案例。 #### 3.22 压缩解压缩(Deflate: Zip and Gzip) 介绍了ZIP和GZIP格式,它们使用了DEFLATE压缩算法。 #### 3.23 LZMA和7-Zip LZMA是一种高效压缩算法,7-Zip是使用LZMA算法的文件压缩工具。 #### 3.24 PNG PNG格式使用了多种压缩方法,包括LZ77的变体。 #### 3.25 XML压缩(XML Compression: XMill) 一种针对XML文档的数据压缩方法。 #### 3.26 EXE压缩器(EXE Compressors) 专门用于压缩可执行文件的工具。 #### 3.27 CRC(CRC) 循环冗余校验,用于错误检测和数据完整性验证。 #### 3.28 摘要(Summary) 对上述内容的简要总结。 #### 3.29 数据压缩专利(Data Compression Patents) 介绍了数据压缩领域相关的专利信息。 #### 3.30 统一化(A Unification) 对不同数据压缩技术的整合和比较。 ### 4. 图像压缩 #### 4.1 引言(Introduction) 阐述图像压缩的基本概念和重要性。 #### 4.2 图像压缩方法(Approaches to Image Compression) 对图像压缩技术进行分类和介绍。 #### 4.3 直观方法(Intuitive Methods) 介绍直观方法在图像压缩中的应用。 #### 4.4 图像变换(Image Transforms) 介绍了将图像从空间域转换到变换域的过程。 #### 4.5 正交变换(Orthogonal Transforms) 正交变换在图像压缩中的应用和原理。 #### 4.6 离散余弦变换(The Discrete Cosine Transform, DCT) DCT是JPEG图像压缩标准的核心技术。 #### 4.7 测试图像(Test Images) 用于评估图像压缩算法性能的标准图像集。 #### 4.8 JPEG JPEG是广泛使用的图像压缩标准。 #### 4.9 JPEG-LS JPEG-LS是JPEG的无损压缩版本。 #### 4.10 渐进式图像压缩(Progressive Image Compression) 渐进式压缩允许图像以逐渐提高的质量被传输。 #### 4.11 JBIG JBIG是一种用于黑白图像的压缩标准。 #### 4.12 JBIG2 JBIG2是JBIG的后继标准,用于压缩扫描文档。 #### 4.13 简单图像(Simple Images: EIDAC) 介绍EIDAC格式,一种用于高效图像表示的格式。 #### 4.14 矢量量化(Vector Quantization) 将图像像素块映射到最接近的码本矢量。 #### 4.15 自适应矢量量化(Adaptive Vector Quantization) 矢量量化的一种变体,可以根据图像内容自适应调整量化策略。 #### 4.16 块匹配(Block Matching) 块匹配用于块编码技术,通过在图像中寻找最匹配的块来减少数据量。 #### 4.17 块截断编码(Block Truncation Coding) 一种用于图像压缩的简化技术,通过使用较少的比特来表示图像块。 #### 4.18 基于上下文的方法(Context-Based Methods) 介绍基于图像内容上下文的压缩方法。 #### 4.19 FELICS FELICS是一种用于图像压缩的快速编码算法。 #### 4.20 渐进式FELICS FELICS的改进版本,支持渐进式图像传输。 #### 4.21 MLP MLP(多层感知器)用于图像压缩中的预测建模。 #### 4.22 自适应Golomb 一种动态调整参数以适应图像内容的压缩方法。 #### 4.23 PPPM PPPM是一种结合了预测和上下文模型的图像压缩方法。 #### 4.24 CALIC CALIC是一种用于图像压缩的上下文自适应算术编码方法。 #### 4.25 差分无损压缩(Differential Lossless Compression) 通过差分编码提高无损压缩的效率。 #### 4.26 DPCM DPCM(差分脉冲编码调制)是图像压缩中常用的一种技术。 #### 4.27 上下文树加权(Context-Tree Weighting) 用于图像压缩的上下文模型技术。 #### 4.28 块分解(Block Decomposition) 通过将图像分解成小块来简化图像压缩过程。 #### 4.29 二叉树预测编码(Binary Tree Predictive Coding) 使用二叉树结构对图像进行预测编码。 #### 4.30 四叉树(Quadtrees) 四叉树用于图像分割和表示。 #### 4.31 四分法(Quadrisection) 一种将图像分成四个相等部分的方法。 #### 4.32 空间填充曲线(Space-Filling Curves) 空间填充曲线用于图像的多维数据表示。 #### 4.33 Hilbert扫描和向量量化(Hilbert Scan and VQ) Hilbert扫描用于图像的线性表示,向量量化用于减少Hilbert扫描后的数据量。 #### 4.34 有限自动机方法(Finite Automata Methods) 介绍有限自动机在图像压缩中的应用。 #### 4.35 迭代函数系统(Iterated Function Systems) 用于图像压缩的数学模型。 #### 4.** 单元编码(Cell Encoding) 一种基于单元编码技术的图像压缩方法。 ### 5. 小波方法 #### 5.1 傅里叶变换(Fourier Transform) 介绍傅里叶变换在图像压缩中的应用。 #### 5.2 频域(The Frequency Domain) 解释频率域的概念及其在图像压缩中的作用。 #### 5.3 不确定性原理(The Uncertainty Principle) 介绍不确定性原理及其对图像压缩的影响。 #### 5.4 傅里叶图像压缩(Fourier Image Compression) 讨论傅里叶变换在图像压缩中的具体应用。 #### 5.5 CWT及其逆变换(The CWT and Its Inverse) 介绍连续小波变换及其逆变换。 #### 5.6 Haar变换(The Haar Transform) Haar变换是一种简单的小波变换。 #### 5.7 滤波器组(Filter Banks) 滤波器组用于信号的分解和重构。 #### 5.8 离散小波变换(The DWT) 离散小波变换是图像压缩中一种有效的时频分析工具。 #### 5.9 多分辨率分解(Multiresolution Decomposition) 多分辨率分解是小波变换的进一步发展。 #### 5.10 各种图像分解(Various Image Decompositions) 介绍了小波变换中不同的图像分解方法。 #### 5.11 提升方案(The Lifting Scheme) 提升方案是构造第二代小波变换的一种方法。 #### 5.12 整数小波变换(The IWT) 整数小波变换将小波变换结果量化为整数,以简化计算。 #### 5.13 Laplacian金字塔(The Laplacian Pyramid) Laplacian金字塔在图像压缩和图像处理中具有多种应用。 #### 5.14 SPIHT SPIHT(Set Partitioning in Hierarchical Trees)是一种高效的小波图像压缩算法。 #### 5.15 CREW CREW(Compression with Reversible Embedded Wavelets)是一种可逆的小波压缩方案。 #### 5.16 EZW EZW(Embedded Zerotree Wavelet)是一种用于小波编码的嵌入式方法。 #### 5.17 DjVu DjVu是一种用于文档图像压缩的格式。 #### 5.18 WSQ, 指纹压缩(WSQ, Fingerprint Compression) WSQ是一种用于指纹图像压缩的小波编码方法。 #### 5.19 JPEG 2000 JPEG 2000是基于小波变换的图像压缩标准。 ### 6. 视频压缩 #### 6.1 模拟视频(Analog Video) 介绍了模拟视频信号的基本概念。 #### 6.2 复合和分量视频(Composite and Components Video) 介绍了复合视频和分量视频的区别和应用。 #### 6.3 数字视频(Digital Video) 介绍了数字视频信号及其压缩技术。 #### 6.4 视频压缩(Video Compression) 探讨了视频数据压缩的必要性和挑战。 #### 6.5 MPEG MPEG是广泛使用的视频压缩标准系列。 #### 6.6 MPEG-4 MPEG-4视频压缩标准特别适用于网络视频传输。 #### 6.7 H.261 H.261是早期用于视频会议的视频压缩标准。 #### 6.8 H.264 H.264是目前非常流行的高效视频压缩标准。 ### 7. 音频压缩 #### 7.1 声音(Sound) 介绍了声音信号的基本概念。 #### 7.2 数字音频(Digital Audio) 解释了音频信号如何数字化并用于压缩。 #### 7.3 人耳听觉系统(The Human Auditory System) 介绍了人耳的听觉特性,这些特性被用于音频压缩。 #### 7.4 WAVE音频格式(WAVE Audio Format) WAVE是Windows平台广泛支持的音频文件格式。 #### 7.5 μ-法则和A-法则压缩扩展(μ-Law and A-Law Companding) 介绍了音频信号在电话系统中使用的压缩扩展。 #### 7.6 ADPCM音频压缩(ADPCM Audio Compression) ADPCM是一种音频信号的差分脉冲编码调制技术。 #### 7.7 MLP音频(MLP Audio) MLP是多声道线性预测音频压缩技术。 #### 7.8 语音压缩(Speech Compression) 介绍了语音信号的压缩技术。 #### 7.9 Shorten Shorten是一种开源的音频压缩工具。 #### 7.10 FLAC FLAC是一种无损音频压缩格式。 #### 7.11 WavPack WavPack是另一种无损音频压缩方案。 #### 7.12 Monkey’s Audio Monkey’s Audio是一种流行的无损音频压缩软件。 #### 7.13 MPEG-4音频无损编码(MPEG-4 Audio Lossless Coding, ALS) ALS是MPEG-4标准中用于音频无损压缩的部分。 #### 7.14 MPEG-1/2音频层(MPEG-1/2 Audio Layers) MPEG-1/2音频层是早期MPEG音频压缩标准。 #### 7.15 高级音频编码(Advanced Audio Coding, AAC) AAC是MPEG-4音频编码标准的后继者,提供了更好的音频质量。 #### 7.16 Dolby AC-3 Dolby AC-3是一种广泛用于电影和家庭影院的音频编码格式。 ### 8. 其他方法 #### 8.1 Burrows-Wheeler方法(The Burrows-Wheeler Method) 介绍了Burrows-Wheeler变换,一种数据压缩技术。 #### 8.2 符号排序(Symbol Ranking) 符号排序是一种用于数据压缩的排序技术。 #### 8.3 ACB ACB(Arithmetic Coding and Burrows-Wheeler Transform)结合了算术编码和Burrows-Wheeler变换。 #### 8.4 基于排序的上下文相似性(Sort-Based Context Similarity) 介绍了如何通过排序来发现数据中的相似性。 #### 8.5 稀疏字符串(Sparse Strings) 稀疏字符串技术用于压缩稀疏数据。 #### 8.6 基于单词的文本压缩(Word-Based Text Compression) 一种文本压缩方法,利用单词的重复性进行压缩。 #### 8.7 文字图像压缩(Textual Image Compression) 对文字图像进行压缩的方法。 #### 8.8 动态马尔可夫编码(Dynamic Markov Coding) 动态马尔可夫编码是一种统计模型压缩方法。 #### 8.9 FHM曲线压缩(FHM Curve Compression) FHM曲线用于减少曲线数据的表示复杂性。 #### 8.10 Sequitur Sequitur是一种上下文无关文法的压缩技术。 #### 8.11 三角形网格压缩(Triangle Mesh Compression: Edgebreaker) 介绍了一种高效的三维模型压缩方法。 #### 8.12 SCSU: Unicode压缩(SCSU: Unicode Compression) SCSU是一种用于Unicode文本的压缩技术。 #### 8.13 便携式文档格式(Portable Document Format, PDF) 介绍了PDF文档的压缩技术。 #### 8.14 文件差异(File Differencing) 文件差异技术用于创建文件的更新版本。 #### 8.15 超光谱数据压缩(Hyperspectral Data Compression) 介绍了超光谱数据的压缩方法。 ### 附录 #### 答案(Answers to Exercises) 包含了书中练习题的答案,便于读者学习和检查。 #### 参考文献(Bibliography) 列出了编写书籍时参考的文献。 #### 术语表(Glossary) 提供了书中所用专业术语的定义和解释。 #### 加入数据压缩社区(Joining the Data Compression Community) 提供了加入数据压缩领域相关组织的信息。 #### 索引(Index) 详细的索引部分,方便读者查找书中内容。 本书提供了大量关于数据压缩技术的理论知识和实践应用,是数据压缩领域的专业参考书籍。通过阅读本书,读者可以全面了解数据压缩的概念、方法和应用,掌握相关的技术知识,并能够应用这些技术解决实际问题。
2025-12-21 22:35:27 8.95MB Data Compression Reference
1
《固态技术术语词典》第八版由JEDEC固态技术协会发布,它是针对固态技术领域的一份标准化文献。这份文件详细描述了固态技术领域内的标准术语和定义,旨在帮助制造商和采购者之间减少误解,促进产品的互换性和改进,并协助采购者在最小延迟内选择和获得适合的产品,无论这些标准在国内还是国际上使用。JEDEC标准和出版物的制定过程包括了准备、审查和通过JEDEC董事会的批准,随后又经过了JEDEC法律顾问的审查和批准。 JEDEC标准和出版物的采纳与它们是否涉及专利或特定的材料、工艺无关。JEDEC不对任何专利持有人承担任何责任,也不对采纳JEDEC标准或出版物的任何一方承担任何义务。在JEDEC组织内,有程序可以将JEDEC标准或出版物进一步处理,并最终使之成为ANSI标准。 根据这份文档,任何声称符合此标准的行为,必须满足标准中明确的所有要求。文档中还指出,如果有关于这份JEDEC标准或出版物内容的询问、评论或建议,应通过JEDEC所提供的地址或在www.jedec.org的标准和文件部分提供的替代联系方式进行。 这份文档在技术上,通过OCR扫描技术来识别和记录信息,但因为技术限制,个别文字可能存在识别错误或遗漏,因此在阅读和理解文档内容时,需要自行进行适当调整以确保通顺性。
2025-12-14 07:46:57 2.95MB
1
计算机视觉注释工具(CVAT) CVAT是用于计算机视觉的免费,在线,交互式视频和图像注释工具。 我们的团队正在使用它来注释数百万个具有不同属性的对象。 许多UI和UX决策都是基于专业数据注释团队的反馈。 在线尝试 。 文献资料 截屏 支持的注释格式 单击“上传注释”和“转储注释”按钮后,可以选择格式。 数据集框架允许通过其命令行工具和Python库进行其他数据集转换。 有关支持的格式的更多信息,请参阅。 注释格式 进口 出口 X X X X X X X 分割蒙版 X X X X X X X X X X X X X X X X X X X X X X X X 深度学习无服务器功能,用于自动标记 名称 类型 框架 中央处理器 显卡 互动者 OpenVINO X 探测器 OpenVINO X 探测器 OpenVINO X 探测器
2025-12-10 22:26:23 24.77MB computer-vision deep-learning annotation tensorflow
1
Proficy Machine Edition 授权(标准版和专业版)只能专业搬用
2025-11-27 16:36:44 154B Proficy Machine Edition
1
Through exposure to the news and social media, you are probably aware of the fact that machine learning has become one of the most exciting technologies of our time and age. Large companies, such as Google, Facebook, Apple, Amazon, and IBM, heavily invest in machine learning research and applications for good reasons. While it may seem that machine learning has become the buzzword of our time and age, it is certainly not a fad. This exciting field opens the way to new possibilities and has become indispensable to our daily lives. This is evident in talking to the voice assistant on our smartphones, recommending the right product for our customers, preventing credit card fraud, filtering out spam from our email inboxes, detecting and diagnosing medical diseases, the list goes on and on. If you want to become a machine learning practitioner, a better problem solver, or maybe even consider a career in machine learning research, then this book is for you. However, for a novice, the theoretical concepts behind machine learning can be quite overwhelming. Many practical books have been published in recent years that will help you get started in machine learning by implementing powerful learning algorithms. Getting exposed to practical code examples and working through example applications of machine learning are a great way to dive into this field. Concrete examples help illustrate the broader concepts by putting the learned material directly into action. However, remember that with great power comes great responsibility! In addition to offering a hands-on experience with machine learning using the Python programming languages and Python-based machine learning libraries, this book introduces the mathematical concepts behind machine learning algorithms, which is essential for using machine learning successfully. Thus, this book is different from a purely practical book; it is a book that discusses the necessary details regarding machine learning concepts and offers intuitive yet informative explanations of how machine learning algorithms work, how to use them, and most importantly, how to avoid the most common pitfalls. Currently, if you type "machine learning" as a search term in Google Scholar, it returns an overwhelmingly large number of publications—1,800,000. Of course, we cannot discuss the nitty-gritty of all the different algorithms and applications that have emerged in the last 60 years. However, in this book, we will embark on an exciting journey that covers all the essential topics and concepts to give you a head start in this field. If you find that your thirst for knowledge is not satisfied, this book references many useful resources that can be used to follow up on the essential breakthroughs in this field. If you have already studied machine learning theory in detail, this book will show you how to put your knowledge into practice. If you have used machine learning techniques before and want to gain more insight into how machine learning actually works, this book is for you. Don't worry if you are completely new to the machine learning field; you have even more reason to be excited. Here is a promise that machine learning will change the way you think about the problems you want to solve and will show you how to tackle them by unlocking the power of data. Before we dive deeper into the machine learning field, let's answer your most important question, "Why Python?" The answer is simple: it is powerful yet very accessible. Python has become the most popular programming language for data science because it allows us to forget about the tedious parts of programming and offers us an environment where we can quickly jot down our ideas and put concepts directly into action. We, the authors, can truly say that the study of machine learning has made us better scientists, thinkers, and problem solvers. In this book, we want to share this knowledge with you. Knowledge is gained by learning. The key is our enthusiasm, and the real mastery of skills can only be achieved by practice. The road ahead may be bumpy on occasions and some topics may be more challenging than others, but we hope that you will embrace this opportunity and focus on the reward. Remember that we are on this journey together, and throughout this book, we will add many powerful techniques to your arsenal that will help us solve even the toughest problems the data-driven way.
2025-11-25 01:59:33 10.6MB TensorFlow Python 机器学习
1
计算机网络是信息技术领域中的核心科目,它涉及到网络的构建、通信协议、数据传输以及网络应用等方面。本资源为"计算机网络(第四版)"的英文原版课件,由知名计算机科学家Andrew S. Tanenbaum撰写。 Tanenbaum教授在计算机网络领域的贡献广泛,他的著作深入浅出,深受学习者喜爱。 在压缩包中,包含两部分课件:Chapter 7 和 Chapter 8,分别对应课程的第七章和第八章。以下是对这两章内容的详细概述: **第七章 - 数据链路层(Data Link Layer)** 数据链路层是网络模型中的第二层,它的主要任务是为网络层提供可靠的数据传输服务。这一章将详细讲解数据链路层的功能、协议和工作原理。主要内容包括: 1. **错误检测与纠正**:数据链路层通过校验码(如CRC)来检测传输错误,并可能通过重传机制进行错误纠正。 2. **媒体访问控制(MAC)**:讨论如何在共享媒体上协调多个设备的发送,如CSMA/CD(载波监听多路访问/冲突检测)和CSMA/CA(载波监听多路访问/冲突避免)。 3. **局域网(LAN)技术**:介绍以太网、令牌环网等传统局域网技术及其工作原理。 4. **帧结构**:分析不同协议下的帧格式,如Ethernet II和LLC(逻辑链路控制)。 5. **点对点协议(PPP)**:用于拨号连接和广域网的数据链路层协议,介绍其帧结构和认证机制。 6. **高级数据链路控制(HDLC)**:一种同步数据链路控制协议,用于全双工通信。 **第八章 - 网络层(Network Layer)** 网络层位于OSI模型的第三层,负责数据包的路由和转发。这一章将深入探讨网络层的关键概念和协议: 1. **IP协议**:互联网协议,描述了数据包在网络中的传输方式,包括IP地址的分类(IPv4和IPv6)、分片与重组、路由选择算法等。 2. **路由选择**:介绍路由器的工作原理和静态与动态路由的区别,以及常见的路由协议,如RIP、OSPF和BGP。 3. **子网划分与CIDR**:为了更有效地管理IP地址,会进行子网划分和无类别域间路由(CIDR)的使用。 4. **互联网控制消息协议(ICMP)**:用于网络诊断和错误报告,例如ping命令就是基于ICMP实现的。 5. **IP选项与服务**:如源路由、记录路由等,这些选项可以用于特定的网络调试和监控。 6. **虚拟网络与网络地址转换(NAT)**:虚拟网络如VLAN和NVGRE提供网络隔离,NAT则用于解决公网IP地址稀缺问题。 这两章内容构成了计算机网络中至关重要的部分,涵盖了数据链路层和网络层的基本概念和协议,对于理解网络的底层工作原理有着极其重要的作用。通过深入学习,读者可以掌握网络通信的基础,为后续章节的学习打下坚实基础。
1
计算机网络第四版 computer networks v4 课件 计算机网络第四版 computer networks v4 课件 计算机网络第四版 computer networks v4 课件 计算机网络第四版 computer networks v4 课件 计算机网络第四版 computer networks v4 课件 计算机网络第四版 computer networks v4 课件 计算机网络第四版 computer networks v4 课件
2025-11-23 20:28:02 8.53MB 计算机网络第四版 computer networks
1
德国学校的英文课件,根据Computer Networks(4thEdition)编写
2025-11-23 20:27:13 12.41MB 计算机网络 英文课件
1
GusActivatorPRO A12+ Special Edition V2.1 Windows
2025-11-21 14:31:58 17.32MB
1