具有交叉一致性训练 (CCT) 的半监督语义分割
,
本 repo 包含 CVPR 2020 论文的官方实现:Semi-Supervised Semantic Segmentation with Cross-Consistecy Training,它采用了传统的半监督学习的一致性训练框架进行语义分割,扩展到弱监督学习和在多个域。
强调
(1) 语义分割的一致性训练。 我们观察到,对于语义分割,由于任务的密集性,集群假设更容易在隐藏表示而不是输入上强制执行。
(2) 交叉培训。 我们为半监督语义分割提出了 CCT(Cross-Consistency Training),我们在其中定义了许多新的扰动,并展示了对编码器输出而不是输入执行一致性的有效性。
(3) 使用来自多个域的弱标签和像素级标签。 所提出的方法非常简单灵活,并且可以很容易地扩展到使用来自多个域的图像级标签和像素级标签。
要求
1