空间域图像增强技术主要通过直接处理图像像素来改进图像的质量,这是数字图像处理领域中重要的技术手段之一。该技术主要包括点处理和掩模处理两种方法。点处理涉及单个像素的运算,比如直方图均衡化,这是一种调整图像对比度的方法,通过扩展图像的直方图分布来使图像的对比度更佳。而掩模处理涉及使用一个模板或掩模(通常是一个子图像),根据这个掩模在图像的每个像素周围进行局部操作,典型的掩模处理方法之一是邻域平均法,它主要用于图像平滑,去除噪声。 直方图均衡化原理涉及到图像的统计特性,通过统计原图像的像素分布,再通过灰度变换函数对像素进行重新映射,使得原图的直方图分布更加均匀,从而达到增强图像对比度的效果。尽管直方图均衡化在视觉效果上有很大提升,但均衡化后的直方图并不一定完全均匀分布,原因在于图像像素值和灰度级是离散的,且均衡化处理时可能会造成灰度级的合并。 邻域平均法是图像平滑的一种常用技术,其基本思想是用像素及其邻域内像素的平均值来替换该像素的值。这种方法可以有效地去除图像的随机噪声,但同时也可能使图像边缘变得模糊。为了克服这一缺点,引入了加门限法,这种改进方法通过判断邻域像素值与中心像素值之间的差异,并设置一个阈值,只有当差异小于这个阈值时才进行平均处理,从而可以更好地保留图像的边缘信息。 在实验中,使用了MATLAB这一强大的科学计算工具来实现上述算法。MATLAB内置了各种函数,如“histeq”用于直方图均衡化处理,而“imhist”则用于显示图像的直方图。除了内置函数,MATLAB也支持用户自定义程序,通过编写相应代码来实现更复杂的图像处理功能。 通过本实验的学习与实践,可以深刻理解空间域图像增强的原理,掌握直方图均衡化和邻域平均法等常用图像处理技术,并通过编写和运行MATLAB程序来加深对理论知识的理解和应用能力。 实验分析部分,通过对原图像的直方图均衡化处理,可以观察到处理前后的图像及其直方图变化,从视觉效果上比较图像的亮度、对比度及细节信息的增强。此外,通过在图像中加入高斯噪声,再进行4-邻域平均平滑处理,可以观察到噪声消除效果及边缘的模糊和改善情况。实验结论部分则对实验结果进行了总结,解释了图像处理前后效果的差异以及产生的原因。 附件部分则包含了实验设计的结果和程序清单,提供了实验操作的具体细节和代码。这些附件是实验报告的重要组成部分,能够让读者了解实验的具体操作步骤,也为其他研究人员提供了参考和借鉴的可能。 本实验报告通过理论学习和MATLAB编程实践,深入探讨了空间域图像增强技术,不仅让读者学习到了基本的图像处理知识,而且通过实验加深了对相关技术的理解和应用能力。
1
目前,单片机(51,ARM等)技术、DSP技术和EDA技术是数字电路设计领域的三大主流技术,精通其中的一种技术都易于就业。在高等学校,EDA技术这门课一般是讲述FPGA/CPLD器件的设计技术,是现代硬件工程师必须掌握的技术之一。电信学院的电信、通信和光信息专业都开设了《EDA技术》这门课程,从2021年开始,该课程改名为数字系统设计,课时和内容都增加了,教学目标也提高了。EDA技术的发展很快,体现在器件、开发软件及其功能不断更新升级,其教学也要与时俱进,2015年更新了实验箱,本实验讲义基于新实验箱而编写。数字系统设计实验的最终目的是要学会使用VerilogHDL语言来设计FPGA。要求掌握VerilogHDL语言、一种开发工具、FPGA的设计流程和FPGA器件的基本知识和使用方法。实验使用的开发软件是ALTERA公司的厂家工具QuartusII13.1,该软件的应用非常广泛,也是FPGA设计的入门工具之一,比较适合于高校的本科教学。新的实验设备以DE1-SOC板为核心板(台湾友晶公司生产)
2025-11-15 16:57:46 159.93MB
1
在2023年北京邮电大学的通信原理实验报告中,重点关注了双边带抑制载波调幅(DSB-SC AM)的相关知识和实验操作。DSB-SC AM作为一种常见的通信调制方式,其核心在于通过调制过程移除了载波分量,保留了两个边带,从而节约了传输功率,并且理论上能够实现更高的频谱利用率。实验报告中详细阐述了DSB-SC AM信号的产生、波形特点、频谱特点,以及相干解调的原理和实施措施。 实验报告首先介绍了DSB-SC AM信号的时域和频域表现形式。时域中的DSB信号表达式为s(t)=m(t)coswt,频域表达式为1/2[M(w-wc)+M(w+wc)]。在此基础上,实验报告进一步说明了DSB-SC AM信号的产生原理和相干解调原理,即通过模拟基带信号与正弦载波相乘得到DSB-SC AM信号,并指出DSB-SC AM信号的解调必须采用相干解调方式。 在试验环节中,通过模拟音频信号和载频信号,使用乘法器产生DSB-SC AM信号,并通过示波器观察信号波形及其频谱特点。另外,为了能够在接收端恢复载波,实验中采取在发送端加导频的方法,并在接收端使用锁相环来提取载波。锁相环能够通过锁相机制跟踪导频信号,实现载波的提取。实验报告详细描述了锁相环的工作原理和调试步骤,以及如何利用低通滤波器(LPF)和90度移相器进行相干解调,最终获取模拟基带信号。 为了深入理解DSB-SC AM信号的特点,实验报告对VCO(压控振荡器)的压控灵敏度进行测量。VCO是锁相环中实现信号频率变化的关键元件,压控灵敏度的测量可以确定其频率调整的灵敏程度,这对于锁相环的调试至关重要。 整个实验过程中,详细记录了实验步骤和结果,包括DSB-SC AM信号的产生、加导频信号、锁相环的调试和载波的提取,以及最终相干解调的实现。实验报告强调了理论与实践相结合的重要性,通过实验操作加深了对DSB-SC AM调制解调原理的理解。 此外,报告中还提及了DSB-SC AM信号相干解调过程中的一些关键点,比如相位翻转与调制信号波形的关系,以及如何通过低通滤波器滤除四倍载频分量,通过隔直流电路滤除直流分量,最终获取纯净的模拟基带信号。 通过以上知识点,可以看出实验报告围绕DSB-SC AM这一通信原理的实验展开,涉及到信号的产生、调制、解调和信号恢复等多个环节。实验不仅增强了学生对通信原理的理解,而且提升了实际操作能力和问题解决能力。
2025-11-15 14:57:08 6.49MB
1
软件定义网络(SDN)是一种网络架构,旨在通过将网络控制层与转发硬件分离,实现网络设备的集中管理和可编程性。传统网络架构中,网络设备的固件通常由设备制造商锁定,使得网络架构的调整、扩容或升级受到限制,同时也增加了网络运维的复杂性。SDN通过解耦控制层和数据转发层,使得网络管理者能够像软件一样灵活地管理和控制网络资源,满足业务需求的变化,同时降低了成本和缩短了网络架构迭代周期。 SDN的核心技术之一是OpenFlow,它提供了一个开放标准的协议,使得控制器能够与网络交换设备通信,并控制交换设备的行为。OpenFlow的控制协议允许网络设备之间通过控制器交换转发信息,而控制器则负责网络的控制平面功能,执行应用层的指令,管理数据转发平面。 SDN的特征包括控制转发分离、网络虚拟化和可编程接口。控制转发分离意味着网络设备只负责转发数据包,而控制功能则集中到控制器上。网络虚拟化允许网络管理员通过控制器抽象基础网络设施,创建多个逻辑网络视图,从而简化了网络的管理和配置。可编程接口为网络管理者提供了一个可以自定义的接口,用于开发和部署新应用,提高网络的灵活性和可扩展性。 在SDN体系结构中,应用层通过API与SDN控制器交互,控制器负责管理网络服务和转发设施,而基础设施层则由网络设备组成。这种分层模型支持了更高级别的网络抽象,使得网络工程师能够通过编程方式直接控制网络行为。 SDN技术的标准化组织是开放网络基金会(ONF),它是一个非盈利机构,推动SDN技术的创新和发展。自ONF成立以来,包括华为、中兴、腾讯等在内的众多国内外公司加入了SDN技术的商业推广行列。 随着SDN技术的不断成熟和应用,它已被广泛应用于数据中心、云计算平台、广域网优化以及企业网络等多种场合。SDN的应用正逐渐改变网络的管理方式,推动网络架构向着更加灵活、智能和自动化的方向发展。
2025-11-14 21:22:23 1.13MB
1
软件定义网络SDN专题技术报告.pptx
2025-11-14 21:21:25 1.23MB
1
6.6KW双向DAB CLLC变换器是一种高效能的电力电子转换设备,它采用CLLC谐振技术结合双有源桥(DAB)结构,实现了高效率的功率双向传输。CLLC谐振变换器由电感L和电容C组成的谐振电路,结合变压器的漏感和互感特性,以达到在宽负载范围内的高效能传输。CLLC结合DAB技术的变换器,可以在不同工作模式下实现AC/DC和DC/AC的双向转换,广泛应用在新能源汽车充电器、储能系统和电力系统中。 本资料包含了双向DAB CLLC变换器的设计和测试全过程的关键文件。其中包括原理图和PCB设计文件,这是进行硬件设计与调试的基础。原理图展示了变换器的整体结构和各个电子元件的布局与连接方式,而PCB文件则详细记录了电路板的物理布局,包括走线、焊盘、元件封装等信息,这有助于深入理解电路板的设计思路和制造要求。 DSP源码部分涉及到变换器的数字信号处理,DSP(Digital Signal Processor)在这里用于实现对变换器的精确控制和管理。源码是变换器能够正常运行的核心,它包含了变换器启动、运行、保护、故障处理等多方面的控制算法。开发者可以通过分析源码来了解变换器的控制逻辑和执行流程,为后续的二次开发提供参考。 仿真模型则为变换器的设计提供了验证平台。通过使用仿真软件建立变换器的数学模型,可以模拟变换器在不同工作条件下的性能表现,快速识别设计中的潜在问题。仿真模型的建立基于变换器的电路原理和元件参数,它可以帮助设计者优化电路结构,提高设计的成功率和效率。 计算资料是变换器设计过程中必不可少的一部分,它包括了变换器工作时所需的电气参数计算、损耗估算、效率分析等。通过精确的计算,设计者可以对变换器的整体性能有一个全面的预估,并据此调整设计参数以达到最优的性能指标。 测试报告则对变换器的最终性能进行了详细的记录和分析。测试报告通常包括变换器的效率、稳定性、温度测试、EMC测试和安全测试等内容。通过测试报告,使用者可以对变换器的实际运行状况有一个清晰的了解,判断其是否满足设计要求和应用标准。 6.6KW双向DAB CLLC变换器的相关资料为我们提供了一个完整的设计参考。从原理图PCB到DSP源码,从仿真模型到计算资料,再到测试报告,每一个环节都对变换器的设计和优化至关重要。这些资料不仅适用于从事电力电子技术的工程师进行学习和参考,也是相关专业学生进行深入研究的宝贵资源。
2025-11-13 21:15:34 1.51MB
1
ZZU编译原理实验报告是一份关于编译原理这一计算机科学领域的重要实验性文档。编译原理是研究如何将一种编程语言所编写出来的源代码转换为另一种语言代码的技术学科。实验报告通常需要详细记录实验过程、实验结果以及实验者的分析和思考,它是学习和掌握编译原理不可或缺的部分。实验报告中往往会包含对编程语言语法分析、语义分析、中间代码生成、目标代码生成和优化等编译过程的深刻理解和实践操作。 在该实验报告中,“ZZU”可能是报告的编写者或者所属机构的简称,表明这份报告可能是由某个组织或个人完成的。报告中提到的“代码稍后上传”,意味着该实验报告可能是一个系列文档的组成部分,其中包含了实验相关的代码文件,这些代码文件需要通过压缩包的形式上传并分享给需要的人。 标签中的“软件/插件”表明该实验报告的内容可能涉及到与编译相关的软件工具或者插件的使用方法和效果评估。这些工具或插件可能是为了辅助实验过程、提高编程效率或实现特定编译功能而设计的。 由于实验报告的具体内容没有提供,我们无法详细讨论报告中所涉及的实验细节、所用编程语言的特性、实验环境的配置以及实验结果的具体分析。然而,基于上述信息,可以推测这份报告将是编译原理实践教学或学习过程中的一个宝贵资料,有助于学习者深入理解编译过程中的各种技术细节。 此外,提到的“压缩包文件的文件名称列表”中只有一个简单描述“编译原理实验”,这表明压缩包中可能只包含了一份主要的实验报告文档,或者实验报告的主体文件。由于文件名称较为抽象,不包含实验的具体细节,我们无法从文件名称推断出具体的实验内容。 ZZU编译原理实验报告是一个针对计算机科学专业学生进行的实践性学习活动。通过实验报告的撰写,学习者可以在实践过程中加深对编译原理这一核心课程的理解,并掌握相关软件工具的应用。这份报告对于那些希望深入学习和了解编译原理的人而言,将是一个不可多得的学习资源。
2025-11-13 20:00:48 2.86MB
1
测试大纲和测试报告是软件开发过程中的重要环节,特别是在Android应用开发中,它们确保了产品的质量和用户体验。测试大纲是测试活动的蓝图,列出了需要执行的各项测试任务,而测试报告则记录了测试过程和结果,提供了对软件性能的评估。 1. **登录测试**:登录功能是任何应用的基础,它验证用户的认证信息,如用户名和密码,确保用户能够安全、顺利地进入系统。在测试中,我们需要检查登录失败和成功的处理,包括无效的用户名或密码、网络连接问题、验证码机制等。 2. **注册测试**:注册新用户是获取应用服务的第一步。测试应涵盖各种注册场景,如填写有效和无效的个人信息,重复的用户名,验证电子邮件地址的有效性,以及注册后的确认流程。 3. **找回密码测试**:这项测试主要验证用户在忘记密码时,能否通过预留的联系方式(如电子邮件)找回。需要测试邮箱验证的准确性和安全性,以及新密码设置的规则和流程。 4. **运动信息记录测试**:这是针对健康和健身类应用的关键功能。测试需确保能准确记录运动数据,如日期、里程、运动类型,并且能与云端同步。同时,要考虑不同运动模式(如健走、跑步、骑行)的数据记录准确性。 5. **运动轨迹绘制测试**:基于经纬度数据,测试运动轨迹的绘制精度和实时性。这涉及地图API的集成和性能,以及轨迹动画的流畅性。还要测试轨迹数据在运动结束后的云端同步。 6. **一周数据统计测试**:统计功能需确保能正确收集和展示过去一周的运动数据,如步数、里程,以柱状图形式呈现。测试应涵盖数据的本地存储、读取,以及图表的可视化效果和适应性,特别是自定义视图在不同设备上的表现。 测试报告详细列出了测试环境,包括不同品牌和版本的Android设备,如LG G6、华为P8、Samsung Galaxy S7和一加3T。这些设备用于模拟真实用户的使用情况,确保应用的兼容性和稳定性。报告还提及了功能测试的结果,如登录、注册和找回密码功能的成功执行,但同时也指出了一些未完成或待优化的地方,如手机号找回密码功能未开通,跑步和骑行数据的同步,以及自定义视图的机型适配问题。 在后续的开发过程中,开发团队应该针对测试报告中提到的问题和不足进行改进,以提供更稳定、功能完备的Android应用。这可能包括增强服务器端功能、优化客户端代码、修复兼容性问题以及提升用户体验设计。
2025-11-13 09:23:15 14KB android
1
《人工智能》学习报告.doc
2025-11-12 20:24:32 39KB
1
"数字信号处理课程实验报告" 数字信号处理是指对数字信号进行采样、量化、编码、传输、存储和处理等操作,以获取有用的信息或实现特定的目的。数字信号处理技术广泛应用于通信、图像处理、音频处理、 biomedical engineering 等领域。 在数字信号处理中,离散时间信号与系统是最基本的概念。离散时间信号是指在离散时间点上采样的信号,而离散时间系统是指对离散时间信号进行处理和变换的系统。 在实验一中,我们学习了如何使用MATLAB生成离散时间信号,包括单位抽样序列、单位阶跃序列、正弦序列、复正弦序列和实指数序列。这些信号类型在数字信号处理中非常重要,因为它们可以模拟实际信号的特性。 单位抽样序列是指具有单位幅值的抽样序列,用于测试信号处理系统的性能。单位阶跃序列是指具有单位幅值的阶跃信号,用于测试信号处理系统的响应速度。正弦序列是指具有固定频率和幅值的正弦信号,用于测试信号处理系统的频率响应。复正弦序列是指具有固定频率和幅值的复正弦信号,用于测试信号处理系统的频率响应和相位shift。实指数序列是指具有固定幅值和衰减率的指数信号,用于测试信号处理系统的衰减性能。 在实验二中,我们学习了如何使用FFT(Fast Fourier Transform)进行谱分析。FFT是一种快速傅里叶变换算法,用于将时域信号转换为频域信号。频谱分析是数字信号处理中的一个重要步骤,因为它可以帮助我们了解信号的频率特性和power spectral density。 在实验三中,我们学习了如何设计数字滤波器。数字滤波器是指使用数字信号处理技术设计的滤波器,用于滤除信号中不需要的频率分量。数字滤波器有很多种类,包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。 数字信号处理课程实验报告涵盖了数字信号处理的基础知识和技术,包括离散时间信号与系统、FFT谱分析和数字滤波器设计。这三部分内容都是数字信号处理的核心内容,对数字信号处理技术的理解和应用非常重要。
2025-11-11 23:06:21 2.26MB 数字信号处理 大学课程 实验报告
1