南京邮电大学通达学院matlab 仿真 蚁群算法 代码+报告

上传者: 53944807 | 上传时间: 2026-01-02 21:10:01 | 文件大小: 640KB | 文件类型: ZIP
蚁群算法是一种智能优化算法,在TSP商旅问题上得到广泛使用。蚁群算法于1992年由Marco Dorigo首次提出,该算法来源于蚂蚁觅食行为。 (1)数据准备 为了防止既有变量的干扰,首先将环境变量清空。然后将城市的位置坐标从数据文件(详见源程序里的excel文件)读入程序,并保存到变量为citys的矩阵中(第一列为城市的横坐标,第二列为城市的纵坐标)。 (2)计算城市距离矩阵 根据平面几何中两点间距离公式及城市坐标矩阵citys,可以很容易计算出任意两城市之间的距离。但需要注意的是,这样计算出的矩阵对角线上的元素为0,然而为保证启发函数的分母不为0,需将对角线上的元素修正为一个足够小的正数。从数据的数量级判断,修正为以下,我们认为就足够了。 (3)初始化参数 计算之前需要对参数进行初始化,同时为了加快程序的执行速度,对于程序中涉及的一些过程量,需要预分配其存储容量。 (4)迭代寻找最佳路径 该步为整个算法的核心。首先要根据蚂蚁的转移概率构建解空间,即逐个蚂蚁逐个城市访问,直至遍历所有城市。然后计算各个蚂蚁经过路径的长度,并在每次迭代后根据信息素更新公式实时更新各个城市连接路径上的信息

文件下载

资源详情

[{"title":"( 4 个子文件 640KB ) 南京邮电大学通达学院matlab 仿真 蚁群算法 代码+报告","children":[{"title":"20630717倪岳椿","children":[{"title":"ACA_main_ex1.m <span style='color:#111;'> 4.93KB </span>","children":null,"spread":false},{"title":"2.m <span style='color:#111;'> 4.24KB </span>","children":null,"spread":false},{"title":"报告.docx <span style='color:#111;'> 653.07KB </span>","children":null,"spread":false},{"title":"Chap9_citys_data.xlsx <span style='color:#111;'> 11.04KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明