粒子群算法(PSO)优化长短期记忆神经网络的数据回归预测,PSO-LSTM回归预测,多输入单输出模型 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-05-13 10:49:49 41KB 神经网络 lstm
1
基于粒子群算法优化长短期记忆网络(PSO-LSTM)的时间序列预测。 优化参数为学习率,隐藏层节点个数,正则化参数,要求2018b及以上版本,matlab代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-05-13 10:49:35 26KB 网络 网络 matlab lstm
1
粒子群算法(PSO)优化长短期记忆神经网络的数据回归预测,PSO-LSTM回归预测,多输入单输出模型 粒子群算法(PSO)优化长短期记忆神经网络的数据回归预测,PSO-LSTM回归预测,多输入单输出模型 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-05-13 10:47:04 3.19MB 神经网络 lstm
1
本文主要对LSTM模型结构改进及优化其参数, 使其预测股票涨跌走势准确率明显提高, 同时对美股周数据及日数据在LSTM神经网络预测效果展开研究. 一方面通过分析对比两者预测效果差别, 验证不同数据集对预测效果的影响; 另一方面为LSTM股票预测研究提供数据集的选择建议, 以提高股票预测准确率. 本研究通过改进后的LSTM神经网络模型使用多序列股票预测方法来进行股票价格的涨跌趋势预测. 实验结果证实, 与日数据相比, 周数据的预测效果表现更优, 其中日数据的平均准确率为52.8%, 而周数据的平均准确率为58%, 使用周数据训练LSTM模型, 股票预测准确率更高.
1
粒子群算法(PSO)优化双向长短期记忆神经网络的数据分类预测,PSO-BiLSTM分类预测,多输入单输出。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图
2024-04-12 14:36:46 74KB 神经网络
1
基于卷积神经网络-长短期记忆网络(CNN-LSTM)分类预测,matlab代码,要求2019及以上版本。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2024-04-09 16:35:48 158KB 网络 网络 matlab lstm
1
长短期记忆网络(Long Short-Term Memory, LSTM)是一种递归神经网络(Recurrent Neural Network, RNN)的变体,专门用于处理和预测序列数据。它通过引入门控机制和记忆细胞,能够更好地捕捉序列中的长期依赖关系,并解决传统RNN中的梯度消失或爆炸问题。
2024-04-09 16:35:28 2KB pytorch pytorch lstm NLP
1
Python实现LSTM长短期记忆神经网络时间序列预测(完整源码) Python实现LSTM长短期记忆神经网络时间序列预测(完整源码) Python实现LSTM长短期记忆神经网络时间序列预测(完整源码) Python实现LSTM长短期记忆神经网络时间序列预测(完整源码)
2024-04-04 09:49:24 255KB python lstm 神经网络
1
粒子群算法(PSO)优化双向长短期记忆神经网络的数据回归预测,PSO-BiLSTM回归预测,多输入单输出模型。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-02-27 15:13:03 35KB 神经网络
1
基于卷积神经网络-双向长短期记忆网络结合注意力机制(CNN-BILSTM-Attention)回归预测,多变量输入模型。matlab代码,2020版本及以上。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-02-23 16:18:23 33KB 网络 网络 matlab
1