针对滚动轴承极易损伤,振动信号表现出非线性、非平稳性等特点,提出一种基于局部特征尺度分解(LCD)和改进支持向量机(SVM)的滚动轴承故障诊断算法。首先对采集到的轴承振动信号进行LCD,分解得到一系列内禀尺度分量(ISC),通过与经验模态分解(EMD)对比研究,证明了LCD方法的优越性;然后计算所有分量的能量熵值,提取出轴承信号的敏感特征集,输入到经过遗传算法(GA)进行参数优选后的SVM识别模型进行轴承状态的诊断识别。实验研究表明,基于LCD和改进SVM的轴承诊断算法能较好地提取出轴承故障特征信息,对4种轴承状态的识别率高达90%,是一种较为有效的轴承故障诊断方法。
2023-01-07 10:48:30 392KB 滚动轴承
1
滚动轴承是应用最为广泛、也是最易损坏的机械设备关键零部件之一,其状态影响着整个设备的稳定运行。因此,滚动轴承的状态监测和故障诊断一直为大家所重视。而将声发射技术应用于滚动轴承的状态监测与故障诊断,是当前研究的一个热点。 本文以声发射技术为手段,对基于声发射技术的滚动轴承状态监测与故障诊断进行了理论和实验研究,着重对滚动轴承点蚀故障的声发射诊断方法进行了详细研究。研究工作主要包括以下三个方面: 1、滚动轴承声发射信号的参数分析。采用了振铃计数、均方根、信号幅度、峭度系数等典型声发射参数对不同工况下(不同载荷、转速、故障尺寸及传播途径)滚动轴承声发射的特征及传播特性进行了分析,得出了各参数对工况变化的反应趋势及敏感性。 2、Morlet连续小波变换的参数选择。针对连续小波变换的尺度和基小波波形参数选择,提出基于遗传算法的优化选取方法,参数的优化选择有效提高了Morlet连续小波尺度谱对滚动轴承声发射信号分析的时频性能。 3、滚动轴承声发射信号的波形分析。在连续小波变换参数优化选取的基础上,对不同工况下滚动滚动轴承声发射信号进行时频分析,并结合希尔伯特谱分析,详细地分析了滚动轴承声发射的时频特性,提出了时频特征;另外,利用离散小波变换,进一步定量分析了信号时频分布。
2022-12-23 20:14:10 5.02MB 声发射 滚动轴承 故障诊断 小波变换
1
- main为wdcnn卷积神经网络主文件,运行它就可以得出结果- preprocess为预处理文件,主要实现制作数据集的功能- 日志文件保存在logs里面,通过启动tensorboard查看
2022-11-05 18:02:12 34.46MB python 轴承故障诊断 西储斯大学 WDCNN
1
基于emd的滚动轴承故障诊断驱动计数端的内圈故障,故障明显,基于EMD的包络解调有效风扇计数端的内圈故障,故障效果不好,基于EMD的包络解调不是很有效基础计数端的内圈故障,故障效果不好,基于EMD的包络解调无效,只能看到转频,故障频率不明显
1
针对轴承振动信号非线性、非平稳性和故障特征微弱性的特点,以及工程实际中难以获得大量故障样本的情况,提出了一种基于多尺度排列熵和支持向量机的轴承故障诊断新方法。该方法首先对轴承不同运行状态下的振动信号进行多尺度排列熵特征提取,然后通过距离评估技术从原始多尺度排列熵特征中选取敏感特征,最后将敏感特征输入到采用遗传算法优化的支持向量机中,实现对轴承不同运行状态的自动识别。对实验数据分析的结果表明,该方法可以精细地获取故障信息,从大量原始特征中选择出敏感特征,有效地实现滚动轴承故障状态的诊断。
1
基于WDCNN的轴承故障诊断(含tsne可视化)
2022-10-10 21:05:51 8.66MB 深度学习
1
基于MATLAB的GUI设计了一个简易版的轴承故障诊断系统,该系统的主要有以下几个功能:1、可以作为GUI界面学习的一个例程(含详细源码);2、可以基于西储大学的数据熟悉信号的常见分析手段(FFT/时域波形);3、可以自动选取西储大学的数据进行分析,只需要输入文件名序号即可;4、可以作为毕业设计中软件设计的一部分(某一章节),增加学术工作量,使得算法成果展示更生动。5、软件左上角有放大、缩小、标注数据等功能。
2022-08-05 09:05:56 234.32MB GUI界面、 MATLAB软件 西储大学 毕业设计
1
针对BP神经网络训练过程易陷入局部极值导致训练误差收敛速度慢的问题,提出将具有全局寻优的萤火虫算法,结合BP算法共同训练神经网络。在本质上,萤火虫BP神经网络利用萤火虫算法对神经网络进行早期训练,避开局部极值点,得到优化后的神经网络初始权值后,利用BP算法的局部寻优特性对网络做进一步精细训练。轴承故障实验表明,萤火虫BP神经网络的训练误差收敛速度相比BP神经网络、萤火虫神经网络显著提升,故障识别率最高达到99.47%。
1
十分详细,适合新手学习
2022-07-22 18:06:49 2.52MB matlab 轴承 故障诊断
1
针对滚动轴承故障诊断中普遍存在的小样本学习问题,采用支持向量机实现轴承故障的模式识别。为了解决时域统计参数对于轴承故障的多分类效果较差的问题,引入小波包分解(Wavelet packet decomposition,WPD)技术,提取振动信号各频带的能量系数构造特征向量,并采用Fisher比率法对特征向量进行优化选取;然后利用支持向量机(support vector machine,SVM)进行故障模式识别,并与小波包分解及时域统计参数的分类效果进行对比分析。结果表明:支持向量机是实现轴承故障模式识别的一
2022-07-01 15:25:55 331KB 工程技术 论文
1