带式输送机传动滚筒轴承发生故障时,特别是早期故障,其振动信号中隐含的脉冲故障信息很微弱,且常被淹没在强烈的噪音中,直接做频谱分析或包络分析,很难提取其故障特征。最小熵解卷积(Minimum Entropy Deconvolution,MED)通过最优滤波器对轴承微弱故障信号进行最优滤波,提高了信号的信噪比,然后对滤波后的信号进行包络解调分析,能够提取出信号中隐含的故障特征。将该方法应用于带式输送机传动滚筒中的滚动轴承故障诊断,成功提取出了轴承内圈的早期微弱点蚀故障特征。对FIR滤波器阶数L的选择进行了分析,以确保最优的MED解卷积效果。仿真与应用验证了最小熵解卷积方法在滚动轴承故障诊断的有效性和优点。
1
滚动轴承故障诊断MATLAB程序:快速谱峭度、谱峭度+包络谱分析 滚动轴承故障诊断是机械工程领域的一个重要研究方向。滚动轴承是一种常见的机械元件,用于支撑和转动机械装置中的轴。然而,由于长时间使用或其他原因,滚动轴承可能会出现故障,例如磨损、裂纹或松动等。因此,及时准确地诊断滚动轴承的故障非常重要,以避免设备损坏或生产中断。 MATLAB是一种强大的科学计算和数据分析工具,广泛应用于工程、科学和技术领域。它提供了丰富的函数和工具箱,可以用于信号处理、数据分析、图像处理等各种任务。在滚动轴承故障诊断中,MATLAB可以用于处理和分析滚动轴承的振动信号,以提取特征并判断是否存在故障。 快速谱峭度和谱峭度+包络谱分析是滚动轴承故障诊断中常用的方法之一。快速谱峭度是一种用于检测信号中频率成分变化的方法,可以帮助确定滚动轴承是否存在故障。谱峭度+包络谱分析结合了快速谱峭度和包络谱分析,可以更准确地识别滚动轴承的故障类型和程度。 总之,滚动轴承故障诊断是一个重要的领域,通过使用MATLAB编写的程序和快速谱峭度、谱峭度+包络谱分析等方法,可以帮助工程师和技术人员及时准确地诊断滚动轴承的
2024-01-19 09:20:17 156KB matlab
1
针对传统煤矿电机滚动轴承故障诊断信号噪声大和诊断效率低等问题,提出了一种基于经验模态分解和形态滤波的轴承故障诊断方法。仿真结果验证了所提方法的可行性和有效性。
2023-12-27 15:29:32 216KB 经验模态分解 形态滤波 故障诊断
1
提出了一种基于小波域阈值降噪和改进Hilbert-Huang变换的滚动轴承的振动信号分析方法。利用小波域阈值消噪的方法对振动信号进行降噪,采用基于包络极值延拓和相关系数法的HHT方法得到信号的Hilbert谱和Hilbert边际谱,根据谱图幅值特性判断轴承的状态。该方法能够有效地提取信号特征,具有良好的诊断效果。
2023-12-18 15:31:38 725KB 小波降噪 端点效应 故障诊断
1
滚动轴承故障诊断MATLAB程序:快速谱峭度、谱峭度+包络谱分析
2023-08-11 13:24:53 155KB matlab
1
智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真代码
2023-06-29 21:20:33 687KB
1
针对滚动轴承故障振动信号的非平稳特征,提出了一种基于小波包和经验模态分解(Empirical Mode Decomposition,简称EMD)的滚动轴承故障诊断方法。该方法用小波包对振动信号进行预处理,用Hilbert变换求重构信号的包络,采用EMD方法将包络信号分解为若干个IMF分量,让故障信息得到凸显,然后根据某个分量的频谱,判断滚动轴承的故障类型。实验结果表明,比传统的时频分析方法,该方法能够更有效地提取轴承故障特征,诊断轴承故障。
1
针对滚动轴承极易损伤,振动信号表现出非线性、非平稳性等特点,提出一种基于局部特征尺度分解(LCD)和改进支持向量机(SVM)的滚动轴承故障诊断算法。首先对采集到的轴承振动信号进行LCD,分解得到一系列内禀尺度分量(ISC),通过与经验模态分解(EMD)对比研究,证明了LCD方法的优越性;然后计算所有分量的能量熵值,提取出轴承信号的敏感特征集,输入到经过遗传算法(GA)进行参数优选后的SVM识别模型进行轴承状态的诊断识别。实验研究表明,基于LCD和改进SVM的轴承诊断算法能较好地提取出轴承故障特征信息,对4种轴承状态的识别率高达90%,是一种较为有效的轴承故障诊断方法。
2023-01-07 10:48:30 392KB 滚动轴承
1
滚动轴承是应用最为广泛、也是最易损坏的机械设备关键零部件之一,其状态影响着整个设备的稳定运行。因此,滚动轴承的状态监测和故障诊断一直为大家所重视。而将声发射技术应用于滚动轴承的状态监测与故障诊断,是当前研究的一个热点。 本文以声发射技术为手段,对基于声发射技术的滚动轴承状态监测与故障诊断进行了理论和实验研究,着重对滚动轴承点蚀故障的声发射诊断方法进行了详细研究。研究工作主要包括以下三个方面: 1、滚动轴承声发射信号的参数分析。采用了振铃计数、均方根、信号幅度、峭度系数等典型声发射参数对不同工况下(不同载荷、转速、故障尺寸及传播途径)滚动轴承声发射的特征及传播特性进行了分析,得出了各参数对工况变化的反应趋势及敏感性。 2、Morlet连续小波变换的参数选择。针对连续小波变换的尺度和基小波波形参数选择,提出基于遗传算法的优化选取方法,参数的优化选择有效提高了Morlet连续小波尺度谱对滚动轴承声发射信号分析的时频性能。 3、滚动轴承声发射信号的波形分析。在连续小波变换参数优化选取的基础上,对不同工况下滚动滚动轴承声发射信号进行时频分析,并结合希尔伯特谱分析,详细地分析了滚动轴承声发射的时频特性,提出了时频特征;另外,利用离散小波变换,进一步定量分析了信号时频分布。
2022-12-23 20:14:10 5.02MB 声发射 滚动轴承 故障诊断 小波变换
1
- main为wdcnn卷积神经网络主文件,运行它就可以得出结果- preprocess为预处理文件,主要实现制作数据集的功能- 日志文件保存在logs里面,通过启动tensorboard查看
2022-11-05 18:02:12 34.46MB python 轴承故障诊断 西储斯大学 WDCNN
1