基于深度学习的车型识别系统的设计与实现
2022-05-18 21:06:41 1.54MB 文档资料 深度学习 人工智能
车型识别系统由硬件和软件组成,硬件包括两部摄像机、图像处理计算机。图像处理计算机指安装了车型识别系统软件的计算机。软件包括视频捕获系统和车型识别软件。视频捕获系统负责视频监控,并从视频流中获取帧图像,然后送车型识别软件处理,该系统用微软公司提供的一套在 Windows平台上进行媒体流处理的开发包 DirectShow实现。车型识别软件是该系统的核心,它承担着运动目标检测、分割、图像预处理、车型特征提取、车型分类等重要任务。
2022-05-09 23:23:58 331KB SVM 模式识别
1
车型识别模型结果,包含训练结果、top1、top5的统计图、迁移后的模型结果(可直接用于mobile端)
2022-05-03 12:07:06 378.84MB 深度学习 文档资料 人工智能 车型识别
近年来,深度学习中的卷积神经网络已经广泛运用于图像识别领域,它不仅显著提升了识别准确率,同时在特征提取速度方面也优于许多传统方法。针对高速公路环境下的车型识别问题,引入卷积神经网络(CNNs)理论,设计相应特征提取算法,并结合SVM分类器构建识别系统。通过对高速公路上主要三种车型(小车、客车、货车)的分类实验显示,该方法在识别精度及速度上均取得了较显著的提高。
2022-04-14 11:37:30 691KB 工程技术 论文
1
BITVehicle_Datase车辆车型识别数据集,共9850张图片及一个mat格式标注文件,‘包括Bus’, ‘Truck’, ‘SUV’, ‘Microbus’, ‘Sedan’, ‘Minivan’6个类别车型。由于原始数据集较大,压缩包共2.47G,这里提供了包含下载BITVehicle_Dataset和txt标签文件的百度网盘的txt文件,有需要的可以到百度网盘中下载。希望能帮到有需要的人~
1
针对智能交通系统中的实时车型识别和车流量统计,提出了一种有效的车流量检测和车型识别算法。首先根据机动车道在视频图像中设置虚拟线圈作为检测区域,运用背景差分提取前景目标,并采用基于颜色和纹理的阴影检测方法去除所检测目标中的阴影部分。然后采用两步法进行车型识别并统计对应的车型的车流量。先通过提取目标车辆轮廓的外接最小矩形框面积初步识别车型,然后引入扩展Kalman滤波的跟踪模型统计车辆轮廓目标经过检测区域的帧数,进一步判断所属车型,最后统计对应车型的车流量。实验表明该方法具有较高识别和统计精度,满足对车辆实时监控管理的要求。
2022-03-19 11:42:37 541KB 阴影检测
1
车型识别技术是智能运输系统的核心。针对目前车型识别方法的不足,提出了一种基于车辆声音和震动信号相融合的车型识别方法。用BCS算法提取声震信号的特征,并在特征级融合形成特征向量,以此作为训练样本对支持向量机的分类器进行训练。对两种车型的声音和震动数据进行处理的结果表明,基于特征级融合的声震信号能够准确识别不同的车型,识别准确率达到86%以上,是一种有效的车型识别方法。
2022-03-09 16:09:02 545KB 车型识别
1
提出了一种基于多特征提取和支持向量机(support vector machines,SVM)参数优化的车型识别方法,此方法解决了采用单一特征容易受到光照、天气、阴影等环境影响的问题,并且可以对运动中的车辆进行车型识别。首先,采集车辆样本并进行图像预处理,提取车辆的几何特征、纹理特征和方向梯度直方图(histogram of oriented gradient,HOG)特征;其次,将提取的多种特征量进行组合测试,并与单个特征量的测试结果进行比较;最后,采用粒子群算法优化SVM的参数并使用优化的SVM参数进行运动车辆的车型识别。实验结果表明:提出的多特征提取和SVM参数优化相结合的车型识别方法能够取得很好的识别效果,识别率达到90%以上。
1
行业资料-交通装置-一种基于局部区域特征的车型识别方法和装置.zip