针对朴素贝叶斯分类算法中缺失数据填补问题,提出一种基于改进EM(Expectation Maximization)算法的朴素贝叶斯分 类算法。实验结果表明,改进算法具有较高的分类准确度。并将改进的算法应 用于高校教师岗位等级的评定
2022-03-27 20:51:05 1.43MB 贝叶斯 分类
1
本文实例讲述了朴素贝叶斯分类算法原理与Python实现与使用方法。分享给大家供大家参考,具体如下: 朴素贝叶斯分类算法 1、朴素贝叶斯分类算法原理 1.1、概述 贝叶斯分类算法是一大类分类算法的总称 贝叶斯分类算法以样本可能属于某类的概率来作为分类依据 朴素贝叶斯分类算法贝叶斯分类算法中最简单的一种 注:朴素的意思是条件概率独立性 P(A|x1x2x3x4)=p(A|x1)*p(A|x2)p(A|x3)p(A|x4)则为条件概率独立 P(xy|z)=p(xyz)/p(z)=p(xz)/p(z)*p(yz)/p(z) 1.2、算法思想 朴素贝叶斯的思想是这样的: 如果一个事物在一些属性条件发生
2022-01-13 08:12:45 103KB python python算法 分类
1
贝叶斯分类算法 贝叶斯分类算法的伯努利模型 贝叶斯分类算法的多项式模型 NaiveBayesClassifier
1
朴素贝叶斯分类算法_商品多分类_数据集
2021-12-06 18:13:58 15KB 数据集
1
针对朴素贝叶斯分类算法中缺失数据填补问题,提出一种基于改进EM(Expectation Maximization)算法的朴素贝叶斯分类算法。该算法首先根据灰色相关度对缺失数据一个估计,估计值作为执行EM算法的初始值,迭代执行E步M步后完成缺失数据的填补,然后用朴素贝叶斯分类算法对样本进行分类。实验结果表明,改进算法具有较高的分类准确度。并将改进的算法应用于高校教师岗位等级的评定。
2021-11-29 16:06:47 612KB 论文研究
1
贝叶斯分类算法是统计学的一种分类算法,利用概率统计对数据进行分类,含数据集,Python实现贝叶斯分类算法
2021-11-21 15:59:20 1KB 贝叶斯 python 分类算法
1
bayes-python 具体代码见:bayes_iris.py 我直接用了iris_data数据集,每种花我选取前45条数据当做训练集,剩下5条数据另外存入测试集iris_test_data,并将数据随机手动打乱 测试集如下: 因为这个数据集是连续性属性,所以需要利用概率密度函数。 具体实验步骤为: (1)先读取数据集 (2)计算训练数据集上每个类别的各个特征属性上的均值和方差 (3)开始对测试数据集进行分类 (4)首先估计先验概率,这里我每个类别所占整体数据集的比例是一样的 (5)利用概率密度函数,计算测试数据集上各个属性在每个类别上的条件概率 (6)计算后验概率=先验概率*条件概率 (7)比较在各个类别上的后验概率,取最大值,则分为这个类别 结果如下: 我们将结果与测试集比较发现结果完全正确!
2021-11-19 13:44:52 118KB 附件源码 文章源码
1
通过python实现贝叶斯算法进行水果fruits分类,水果的类型有 width ,height, color, subtupe ,level
2021-11-08 22:08:29 5KB python  贝叶斯 分类算法
1
用朴素贝叶斯分类算法做中文文本分类-附件资源
2021-10-18 12:38:16 106B
1
利用贝叶斯分类算法对两个已知样本进行分类并求出决策面方程,画出3维图像。 代码注释详细,易于看懂。
2021-10-04 20:01:50 2KB 贝叶斯 分类 Bayes matlab
1