bayes-python:基于python的贝叶斯分类算法(数据集为Iris_data)

上传者: 42160398 | 上传时间: 2021-11-19 13:44:52 | 文件大小: 118KB | 文件类型: -
bayes-python 具体代码见:bayes_iris.py 我直接用了iris_data数据集,每种花我选取前45条数据当做训练集,剩下5条数据另外存入测试集iris_test_data,并将数据随机手动打乱 测试集如下: 因为这个数据集是连续性属性,所以需要利用概率密度函数。 具体实验步骤为: (1)先读取数据集 (2)计算训练数据集上每个类别的各个特征属性上的均值和方差 (3)开始对测试数据集进行分类 (4)首先估计先验概率,这里我每个类别所占整体数据集的比例是一样的 (5)利用概率密度函数,计算测试数据集上各个属性在每个类别上的条件概率 (6)计算后验概率=先验概率*条件概率 (7)比较在各个类别上的后验概率,取最大值,则分为这个类别 结果如下: 我们将结果与测试集比较发现结果完全正确!

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明