课件包括模式判别,数据聚类,贝叶斯分类器,参数估计, 结构模式识别,神经网络
2024-04-14 16:22:24 14.27MB 模式识别 模式判别 数据聚类 贝叶斯
1
从数据中学习结构是贝叶斯网络研究最重要的基本任务之一。 特别地,学习贝叶斯网络的可选结构是一个不确定的多项式时间(NP)难题。 为了解决这个问题,已经提出了许多启发式算法,并且其中一些在不同类型的先验知识的帮助下学习贝叶斯网络结构。 然而,现有算法对先验知识有一些限制,例如质量限制和使用限制。 这使得很难在这些算法中很好地利用先验知识。 在本文中,我们将先验知识引入了马尔可夫链蒙特卡洛(MCMC)算法,并提出了一种称为约束MCMC(C-MCMC)算法的算法来学习贝叶斯网络的结构。 定义了三种类型的先验知识:父节点的存在,父节点的不存在以及分布知识,包括边缘的条件概率分布(CPD)和节点的概率分布(PD)。 所有这些类型的先验知识都可以轻松地用在该算法中。 我们进行了广泛的实验,以证明所提出的方法C-MCMC的可行性和有效性。
2024-04-09 10:39:16 2.16MB 研究论文
1
2023.10.2官网发布的新版本。下载完成后,填写学生姓名和学校就可以免费使用,请勿商用。 用于构建、学习和探索贝叶斯网络和其他概率图形模型。
2024-03-06 19:01:48 19.31MB 网络 网络
1
本项目基于朴素贝叶斯和SVM 分类模型,通过对垃圾邮件和正常邮件的数据训练,进行相关词汇词频的统计分析,实现垃圾邮件的识别功能。本项目包括3个模块:数据模块、模型构建、附加功能。需要Python 3.6 及以上配置,在Windows 环境下载Anaconda 完成Python 所需的配置,也可以下载虚拟机在Linux 环境下运行代码。从github 网站下载与python PIL 库配搭使用的文字引擎pytesseract,将PIL 文件夹里的.py 文件,改为相应pytesseract.exe 路径。注册百度云账号,分别建立图像文字识别和图像识别的小程序。
1
贝叶斯信号处理,经典理论书籍。 经典与现代,滤波方法
2024-03-02 13:07:46 19.73MB 贝叶斯
1
基于贝叶斯优化长短期记忆网络(bayes-LSTM)的时间序列预测,matlab代码,要求2019及以上版本。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-02-21 11:41:42 24KB 网络 网络 matlab lstm
1
用于贝叶斯因子统计分析的Matlab软件包。 有关文档和示例,请参见:https ://klabhub.github.io/bayesFactor/
2024-02-17 13:56:16 205KB matlab
1
自己编写并优化的贝叶斯模型,用于神经网络、机器学习或者数据分析、数据挖掘等领域的数学模型。是数据分析、Python程序设计、数学建模等课程作业的不二帮手! 语言为Python,在Python3.6~3.8均可运行,需要安装numpy
2024-02-02 09:24:48 1KB 数据分析 python 神经网络 机器学习
1
贝叶斯算法(bayes)优化随机森林的数据回归预测,bayes-RF回归预测,多变量输入模型。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-01-23 09:06:13 60KB 随机森林
1
贝叶斯决策 学习了一个学期的模式识别课程,老师讲的很好,深入浅出,无奈我脑子不够用没有理解到其中精髓,现在整理了一下听课笔记,以备以后需要时翻阅。这篇文章记录的是贝叶斯决策,其中包括最大后验、最大似然和贝叶斯决策的直观理解和数学理论。 关于先验和后验 关于什么是先验概率和后验概率, 余生最年轻在他的博客里解释的很好。先验(Priori )概率直观上理解,所谓“先”,就是在事情之前,即在事情发生之前事情发生的概率。是根据以往经验和分析得到的概率。比如抛硬币,我们都认为正面朝上的概率是0.5,这就是一种先验概率,在抛硬币前,我们只有常识。这个时候事情还没发生,我们进行概率判断。所谓的先验概率是对事情发生可能性猜测的数学表示。 后验(Posteriori)概率直观上理解是事情已经发生了,事情发生可能有很多原因,判断事情发生时由哪个原因引起的概率。
2024-01-18 12:45:26 2KB 课程资源
1