本书深入讲解如何使用树莓派、OpenCV和Python 3构建实际的计算机视觉应用。内容涵盖图像处理基础、形态学变换、特征检测、深度图估计及真实场景项目,如运动检测、条形码识别与绿幕抠像。适合希望将理论转化为实践的开发者与爱好者。 在当今数字化时代,计算机视觉技术已经成为科技领域中一个极其重要的分支。特别是对于树莓派这种小巧灵活的单板计算机来说,它的应用就显得更为广泛。树莓派配合Python 3和OpenCV(开源计算机视觉库)的组合,为个人开发者和爱好者提供了开发各种计算机视觉应用的便利条件。本书《树莓派计算机视觉实战》就深入探讨了如何利用这些工具实现从基础到高级的计算机视觉项目。 书中首先介绍了树莓派的基本使用和Python 3编程语言的基础知识,为读者打下了坚实的基础。在此基础上,作者详细讲述了如何安装和配置OpenCV库,使其能在树莓派上顺利运行。随后,书中逐步深入到图像处理和计算机视觉的核心内容,包括图像处理的基本操作、形态学变换、特征检测等技术。这些内容对于初学者来说尤为重要,它们是掌握高级计算机视觉算法的基础。 在掌握基础知识之后,书中着重介绍了利用树莓派和OpenCV进行深度图估计的技术。深度图估计是计算机视觉中的一项关键技术,它能够为后续的图像理解和分析提供丰富信息。通过实例演示,作者向读者展示了如何将理论应用于实际项目中,解决现实问题。 除了深度图估计之外,书中还包含了多个实战项目,例如运动检测、条形码识别和绿幕抠像等。每个项目都通过详细的步骤和代码示例来讲解如何在树莓派上实现。例如,在运动检测项目中,读者将学会如何使用摄像头捕捉视频流,并利用OpenCV库分析视频中的运动,实现运动目标的检测。而在条形码识别项目中,读者将学习如何使用OpenCV来读取和解释条形码数据。绿幕抠像项目则着重介绍了如何利用计算机视觉技术从背景中提取前景图像,实现虚拟场景的合成。 书中还引入了名为Mahotas的新计算机视觉库,该库提供了各种图像处理操作的实现,使得图像处理更加高效和方便。此外,作者还讲解了Jupyter笔记本的使用方法,这是一种非常适合数据科学项目的工具。书中不仅指导读者如何在树莓派上设置和使用Jupyter笔记本,还介绍了如何在Windows计算机和Ubuntu系统上进行计算机视觉项目的搭建。 《树莓派计算机视觉实战》是一本全面且实用的指南,它涵盖了从基本设置到实战项目实施的全过程。无论读者是计算机视觉领域的专业人士,还是对该项目充满热情的业余爱好者,这本书都能为他们提供宝贵的知识和技能,帮助他们在计算机视觉的世界里尽情探索和创新。
2025-10-08 10:03:01 24.73MB 计算机视觉 OpenCV Python
1
本书汇集了第17届欧洲计算机视觉会议(ECCV 2022)的最新研究成果,涵盖图像识别、三维重建、视觉语言导航等多个前沿方向。内容聚焦于深度学习与视觉系统的融合创新,展示了自动驾驶、具身智能、语义分割等领域的突破性进展。书中不仅呈现了高水平的学术论文,还探讨了模型泛化性、数据效率及跨模态学习等关键挑战,反映了当前计算机视觉技术的发展脉络与未来趋势。适合从事人工智能、机器感知及相关领域研究的专业人员阅读参考。
2025-10-08 10:00:13 218.78MB 计算机视觉 深度学习 ECCV
1
本书深入讲解如何使用PyTorch构建生产级计算机视觉模型,涵盖图像分类、目标检测、图像分割、姿态估计与异常检测等核心任务。通过项目驱动的方式,结合工业级实践技巧,帮助读者掌握从数据预处理到模型部署的全流程。书中还介绍基于图像的搜索推荐系统与可解释AI技术,融合前沿方法与实用代码,适合希望将理论转化为实际应用的开发者与研究人员。配套代码与数据开放获取,助力快速上手与二次开发。 本书《PyTorch计算机视觉实战》是三位作者——阿克谢·库尔卡尼、阿达尔沙·希瓦南达和尼廷·兰詹·夏尔马倾力编写的计算机视觉领域的实战教程。本书深入探讨了如何运用PyTorch这一强大的深度学习框架,构建和部署生产级的计算机视觉模型。书中涉及的计算机视觉核心任务包括图像分类、目标检测、图像分割、姿态估计以及异常检测等。 在图像分类部分,作者详细介绍了如何使用PyTorch构建高效的图像分类系统,包括数据预处理、模型选择、训练以及优化等关键步骤。目标检测章节则深入讲解了目标检测的原理以及如何实现这一功能,包括区域建议网络(R-CNN)、YOLO(You Only Look Once)和SSD(Single Shot MultiBox Detector)等多种流行算法。 图像分割部分让读者了解像素级别的图像理解方法,探讨了如何通过全卷积网络(FCN)以及U-Net等模型对图像进行详细分割。姿态估计章节则侧重于人体姿态估计技术,解释了该技术在运动分析、人机交互等领域的应用。异常检测部分,作者讲述了如何利用深度学习技术发现视觉场景中的异常行为或对象。 在每项技术的讲解中,作者不仅提供了理论知识,还提供了实际的项目案例,通过项目驱动的学习方式,帮助读者将理论知识应用于实际问题的解决中。书中对工业级实践技巧的介绍,让读者了解如何在真实世界的应用场景中优化和调整模型。 此外,本书还介绍了图像的搜索推荐系统和可解释AI技术,这两个领域在当前计算机视觉技术的发展中扮演着越来越重要的角色。图像的搜索推荐系统部分,作者介绍了如何根据图像内容进行有效的搜索与推荐;可解释AI技术部分,则着重于如何让AI模型的决策过程更加透明和易于理解,这对于提高AI在医疗、金融等关键领域的信任度尤其重要。 为了辅助读者更好地理解内容和实践技能,本书提供了配套的代码和数据集,这些资源的开放获取可以让读者更快地上手,并支持二次开发。这样的安排不仅提升了学习效率,也鼓励了读者在实际操作中进行创新和改进。 本书适合那些希望将计算机视觉理论知识转化为实际应用的开发者和研究人员。无论读者是有经验的专业人士,还是正在学习计算机视觉的学生,都可以通过阅读本书,获得宝贵的知识和实践经验,进一步推动自身在计算机视觉领域的深入发展。 本书的版权归属于三位作者,阿克谢·库尔卡尼、阿达尔沙·希瓦南达和尼廷·兰詹·夏尔马,以及出版社,全书内容受到版权法保护。本书可以在全球范围内,通过实体书或电子书的形式获得,并拥有国际标准书号ISBN-13。 《PyTorch计算机视觉实战》是一本全面介绍计算机视觉和PyTorch框架应用的实战书籍。它不仅涵盖了计算机视觉的核心技术,还提供了实用的代码和项目,是计算机视觉研究者和开发者的宝贵资源。通过本书,读者可以获得构建和部署生产级计算机视觉模型的全面知识,是理论与实践并重的计算机视觉领域重要书籍。
2025-10-08 09:57:41 15.95MB 计算机视觉 PyTorch 深度学习
1
本书深入讲解使用PyTorch构建生产级计算机视觉模型的核心技术。涵盖图像分类、目标检测、图像分割、姿态估计、异常检测等关键任务,结合项目实践与代码实现,帮助读者从入门到精通。通过ResNet、YOLO、Mask R-CNN等主流架构,系统解析卷积神经网络与深度学习模型的设计原理。适合AI开发者、研究人员及计算机视觉爱好者系统学习与工程落地参考。
2025-10-08 09:56:12 15.95MB PyTorch 计算机视觉 深度学习
1
标题和描述中提到的"2021广东工业智造创新大赛-智能算法赛-瓷砖瑕疵检测YOLOV5-pyqt"是一个聚焦于工业领域的竞赛,重点在于利用人工智能技术进行瓷砖瑕疵检测。在这个项目中,参赛者需要使用YOLOV5(You Only Look Once Version 5)深度学习框架,结合Python的PyQT库来实现这一目标。YOLOV5是一种快速且准确的目标检测算法,而PyQT则是一个用于创建图形用户界面的工具,使得用户可以直观地查看和交互检测结果。 标签"pyqt"、"计算机视觉"和"yolo"揭示了项目的核心技术栈。PyQT是Python中的一个模块,用于构建桌面应用程序,它提供了一套完整的GUI工具包,包括窗口、按钮、文本框等组件,使开发者能够构建出功能丰富的应用。计算机视觉(CV)是AI的一个分支,关注如何让机器“看”和理解图像。YOLO(You Only Look Once)是计算机视觉领域中广泛使用的实时目标检测系统,尤其是YOLOV5作为最新版本,在速度和精度上都有显著提升。 在提供的压缩包文件中,我们可以看到以下几个关键文件: 1. `run.ipynb`:这是一个Jupyter Notebook文件,通常用于数据处理、模型训练和结果展示。开发者可能在这里编写了代码,用于加载数据、预处理、训练模型以及展示检测结果。 2. `export.py`:这个文件可能是用于将训练好的模型导出为可部署的形式,便于在实际应用中使用。 3. `main.py`:这通常是主程序文件,负责整个应用的流程控制,包括启动GUI、调用检测函数、显示结果等。 4. `dect.py`:这个可能是检测模块,实现了使用YOLOV5模型进行瓷砖瑕疵检测的逻辑。 5. `requirements.txt`:列出项目运行所需的所有Python包及其版本,确保在不同环境中能正确安装依赖。 6. `yolov5l.yaml`:这是YOLOV5模型的配置文件,定义了网络结构和超参数。 7. `imageSets.yaml`:可能包含了训练和测试图像的设置,比如图像路径、类别信息等。 8. `weights` 文件夹:可能包含了预训练模型的权重文件或者训练过程中保存的模型。 9. `data` 文件夹:通常存储原始图像数据和相关的数据集元数据。 10. `utils` 文件夹:可能包含了一些辅助工具或自定义的函数,如数据处理、模型加载等。 通过这个项目,开发者可以学习到如何利用PyQT构建GUI应用,如何使用YOLOV5进行目标检测,以及如何将这些技术整合到实际工业场景中。同时,项目还涵盖了数据处理、模型训练、模型优化和部署等多个环节,对于提升计算机视觉和深度学习的实践能力具有很高的价值。
2025-10-07 22:40:09 94.46MB pyqt 计算机视觉 yolo
1
在当下迅速发展的移动应用开发领域,安卓平台凭借其开放性和灵活性,成为了开发者们构建移动应用的首选之一。然而,开发效率一直是制约项目进度和质量的关键因素。为了解决这一问题,众多开发者和团队不断探索和开发出各种工具和框架,旨在简化开发流程,提高代码的编写效率和项目的可维护性。RxTool便是其中之一,它作为一个集合了多种功能的工具集,尤其在图像处理项目中展现了其巨大的威力和便利性。 RxTool是专门为安卓开发而设计的工具集,它的核心思想来源于响应式编程理念,即通过数据流和变化传播的模式来简化异步编程。这种编程模型被证明在处理复杂的数据转换和用户界面更新时尤其有效。RxTool采用了Reactive Extensions (Rx) 框架,使得开发者可以在安卓应用中轻松实现响应式编程。 图像处理是移动应用中一个非常重要的方面,它不仅涉及到应用的美观程度,还关系到用户体验和应用性能。因此,对于图像处理项目的开发,效率和质量尤为关键。计算机视觉作为图像处理的核心技术之一,其目的在于使计算机能够从图像或视频中识别、处理和解释信息,从而实现模拟人类视觉系统的功能。 在图像处理项目实战中,RxTool能够帮助开发者实现一些常见的功能,比如图片的加载、显示、保存、编辑、滤镜应用、格式转换等。这些功能往往需要大量的重复代码和对底层图像处理库的调用。而通过RxTool,这些操作可以被大大简化。开发者仅需要很少的代码就能实现强大的图像处理功能,这不仅可以提高开发效率,还能减少出错的可能性。 此外,RxTool还提供了一些高级功能,比如对图像的实时处理和分析。通过这些功能,开发者可以对用户上传的图片进行快速分析,识别出图片中的内容,并根据这些内容做出相应的处理。例如,在一个社交应用中,通过分析用户上传的图片,应用可以自动为图片打上标签,或者根据图片内容推荐相关的好友,从而提高用户体验。 在安卓开发中,RxTool不仅简化了图像处理相关的开发任务,还提升了整个项目的响应性和性能。由于RxTool基于响应式编程模型,它使得开发者能够更加专注于数据流的处理,而不是底层的异步逻辑。这样一来,代码的可读性和可维护性也得到了显著提升。 RxTool作为一个工具集,它的出现大大提升了安卓开发中图像处理项目的开发效率。它不仅简化了复杂的图像处理操作,还通过响应式编程的模式,提高了代码的性能和可维护性。在当前移动应用开发竞争日益激烈的环境下,掌握并熟练使用RxTool这样的工具,对于提升开发效率、构建高质量的应用至关重要。
2025-10-06 14:52:07 8.35MB 图像处理 计算机视觉
1
我觉得借鉴和学习可以,如果只是复制张贴完全没有必要
2025-09-28 10:37:54 224.87MB 计算机视觉 opencv python
1
【数据集】道路结冰数据集 1527 张,目标检测,包含YOLO/VOC格式标注。数据集中包含两种分类,分别是:names: ['clear-road', 'ice-road']。 资源文件内包含:Annotations文件夹为Pascal VOC格式的XML文件 ,images文件夹为jpg格式的数据样本,labels文件夹是YOLO格式的TXT文件,data.yaml是数据集配置文件。 应用场景: 1、高速公路:道路结冰检测算法可以应用于高速公路的结冰预警与监控体系,提前识别出可能结冰的路段和时间点,为交通管理部门提供决策支持。 2、城市道路:通过道路结冰检测算法,可以实时监测城市道路的结冰情况,为城市交通管理提供及时、准确的信息。 3、特殊路段:道路结冰检测算法可以针对桥梁、隧道出入口等进行定制化设计,提高监测的准确性和针对性。 使用方法: 下载YOLO项目,在data目录下创建子文件夹:Annotations、images、imageSets、labels,将VOC格式的XML文件手动导入到Annotations文件夹中,将JPG格式的图像数据导入到images文件夹中。
2025-09-27 16:55:12 98.96MB 数据集 计算机视觉 深度学习 YOLO
1
在当前的计算机视觉领域,目标检测技术一直是研究的热点。而YOLO(You Only Look Once)作为一种流行的实时目标检测系统,因其高速度和高准确性的特点,被广泛应用于各类图像识别任务中。YOLO的最新版本YOLOv11继续沿袭并优化了其算法架构,以期在保持快速检测的同时,进一步提升识别的精确度。YOLOv11通过引入新的网络层结构和训练策略,力图解决以往版本中的弱点,如小物体识别不准确、类别不平衡等问题。 Crowdhuman数据集是一个专为人多场景设计的目标检测数据集,它收集了大量的行人图像,这些图像多来自人群密集的街道、站台等公共场合。由于人多场景的复杂性,普通的目标检测算法在处理这类数据时往往面临挑战。YOLO在处理此类场景时,也存在着挑战,例如难以同时准确检测到多人和人与环境之间的关系,以及难以精确估计人群中每个人的位置等。 因此,将Crowdhuman数据集与YOLOv11算法相结合,对数据集进行标注,可以实现对复杂场景中人数量的有效统计与检测。数据集标注采用YOLOv11格式,这种格式对标注框的定义有严格要求,每个目标物体在图像中都会有一个矩形框标记,框内包含类别信息和位置信息。此类标注使得模型在训练过程中能够准确学习到目标的形状、大小和位置信息,从而提高模型的检测精度和鲁棒性。 本数据集包含了1480余张图片,每张图片都配有相应的YOLO格式标注文件。这些图片和标注文件构成了训练数据集的基础。数据集的创建者可能会使用这些数据来训练和验证YOLOv11模型在人数统计任务上的表现,以期望模型能够在实际应用中达到令人满意的性能。例如,在安防监控、交通流量统计、体育赛事中的人数统计等场景中,这类系统均可以发挥重要的作用。 值得注意的是,尽管YOLOv11具有诸多优势,但在实际应用中仍需对模型进行细致的微调,以适应不同场景和环境条件。因此,数据集的质量和多样性对于模型最终的检测效果至关重要。通过在不同类型和光照条件下的人群图像上训练,YOLO模型可以更好地泛化到实际场景中,有效提高检测准确率。 此外,随着深度学习技术的发展,越来越多的改进版本的YOLO算法不断涌现,每一种改进都是为了解决特定的痛点和挑战。因此,随着研究的深入和技术的迭代,未来在处理复杂人群检测任务时,我们可以期待更加高效和智能的算法出现。 "[YOLO11+Crowdhuman]Crowdhuman人数统计数据集,使用YOLO11格式进行标注"的发布,对目标检测尤其是人数统计任务的研究和应用具有重要意义。这一数据集不仅丰富了YOLO模型训练的素材,也提供了一个平台,供研究人员和开发者测试和提升算法在人多场景下的表现,促进了计算机视觉技术的发展。
2025-09-19 09:12:06 957MB YOLO 人数统计 目标检测 计算机视觉
1
在当前的人工智能研究和应用领域中,目标检测技术是其中最为活跃和重要的分支之一。目标检测不仅涉及到如何准确地识别出图像中的目标,还包括了定位目标的位置,为后续的图像理解任务提供基础。YOLO(You Only Look Once)系列算法是目标检测领域中的一个重要突破,YOLO模型以其速度快、效率高、实时性强的优点,成为实时目标检测任务的首选算法之一。YOLO11作为一个版本,同样继承了YOLO算法家族的这些优点,它通过将检测任务转化为回归问题,直接在图像中预测边界框和类别概率。 本数据集“[YOLO11+Crowdhuman]Crowdhuman人数统计数据集”,正是为了适应这种实时和高效的检测需求而创建。它专注于人群中的个体计数,即人数统计,这一应用场景广泛存在于公共安全监控、交通流量分析、社交活动参与人数预估等多个领域。人群计数的挑战在于人群密集、遮挡严重、个体特征不明显等现象,这要求检测算法必须具备处理高复杂度场景的能力。 数据集采用了Crowdhuman数据集中的图像,这是一个专为人群检测任务设计的数据集,包含了丰富的行人标注信息,非常适合用于训练和测试各种人群检测算法。数据集中的每张图片都对应有YOLO11格式的标注文件,这意味着图像中的每个目标都被精确地标记了其位置(以边界框的形式)和类别(在这种情况下主要是行人类别)。这种格式的标注直接支持了YOLO系列算法的训练,无需额外的转换步骤。 YOLO11的数据集之所以特别重要,还因为它推动了目标检测技术在人数统计方面的应用。通过对大量图像的处理和分析,可以训练出能够适应各种复杂场景的人群检测模型,从而提高自动化和智能化水平。在处理实际问题时,这样的模型能够快速响应,实时统计出人群数量,对于紧急情况下的快速反应和决策支持具有不可估量的价值。 标签中提到了“计算机视觉”,这是人工智能的一个分支,专注于使计算机能够通过分析图像和视频来理解和解释视觉世界。计算机视觉是实现自动化目标检测和人数统计的关键技术。本数据集的创建和使用,将直接推动计算机视觉技术在人群检测和计数方面的研究和应用进展。 [YOLO11+Crowdhuman]Crowdhuman人数统计数据集,使用YOLO11格式进行标注,不仅为研究者提供了一个高质量的训练资源,也为目标检测和计算机视觉的发展做出了贡献,尤其在人群数量自动统计的应用方面具有广泛的影响。
2025-09-19 09:10:37 868.48MB YOLO 目标检测 人数统计 计算机视觉
1