opencv+cuda编译所需要第三方库.cache文件夹: 此文件用于opencv+cuda进行联合编译时使用 1.解压 2.替换到opencv源码目录下 3.将文件夹中对应文件名字修改问opencv所对应的版本名字 具体细节可参考我的博客:https://blog.csdn.net/yohnyang/article/details/129835311
2025-04-22 14:30:12 109.79MB opencv CUDA 深度学习 计算机视觉
1
车牌识别技术是计算机视觉领域中一个重要的应用,广泛用于交通管理、安全监控和自动化停车系统等多个场景。本资源提供了一个完整的基于Matlab的车牌识别系统的设计方案,旨在帮助开发者理解和实现高效的车牌识别算法。 本资源包括: 系统概述:介绍车牌识别系统的基本框架和工作原理,包括图像采集、预处理、特征提取、字符分割和字符识别等关键步骤。 Matlab实现:详细说明如何使用Matlab进行车牌识别系统的开发,包括相关函数和工具箱的使用方法。 图像处理技术:探讨使用Matlab实现的图像处理技术,如图像二值化、边缘检测和形态学操作,以及它们在车牌识别中的应用。 字符识别方法:介绍基于模式匹配和机器学习方法的字符识别技术,并提供Matlab代码实例。 性能优化:分析系统性能瓶颈并提供优化策略,如算法优化、计算效率提升和准确率改进。 实际应用案例:展示系统在实际环境中的应用示例,包括测试数据和结果分析。 通过本资源,用户不仅能够构建一个基于Matlab的车牌识别系统,还能深入理解车牌识别技术的各个方面,从图像处理到字符识别的详细过程。这将帮助开发者在实际工作中更好地设计和实施相关系统。
2025-04-17 18:40:59 7.97MB matlab 计算机视觉 图像处理 毕业设计
1
在本资源中,"MATLAB计算机视觉与深度学习实战代码 - 基于块匹配的全景图像拼接.rar" 提供了使用MATLAB进行计算机视觉和深度学习实践的一个实例,特别是涉及到了全景图像的拼接技术。全景图像拼接是通过将多张局部图像融合成一个广阔的单一图像来实现的,常用于摄影、无人机航拍等领域,能够提供更全面的视角。 我们来了解计算机视觉。计算机视觉是一门多领域交叉学科,它旨在让计算机模仿人类视觉系统,理解并解释现实世界的图像和视频。在这个过程中,关键步骤包括图像采集、预处理、特征检测、物体识别、场景理解等。MATLAB作为强大的数值计算和可视化工具,提供了丰富的计算机视觉库,如Computer Vision Toolbox,使得开发者可以方便地进行图像处理和分析。 然后,深入到深度学习。深度学习是机器学习的一个分支,主要依赖于人工神经网络的多层结构,以模拟人脑的学习方式。通过大量的数据训练,深度学习模型能自动学习特征,并用于分类、识别、预测等多种任务。在计算机视觉领域,深度学习被广泛应用于图像分类、目标检测、语义分割和图像生成等。 本实例中提到的“基于块匹配的全景图像拼接”是一种经典的图像拼接方法。块匹配涉及到将源图像的不同部分(块)与参考图像进行比较,找到最佳匹配的对应区域,以此来确定图像间的相似性和变换参数。通常,块匹配会计算SIFT(尺度不变特征转换)、SURF(加速稳健特征)或ORB(Oriented FAST and Rotated BRIEF)等局部特征,以找到对应点。找到这些对应点后,通过估计几何变换(如仿射变换或透视变换),就可以将多张图像融合成全景图像。 在实际操作中,MATLAB的Computer Vision Toolbox提供了块匹配算法的实现,以及图像变换和融合的函数。例如,`vision.BlockMatcher` 可用于块匹配,`estimateGeometricTransform` 可以估算变换参数,而`imwarp` 或 `imfuse` 可以进行图像的变形和融合。 通过这个实战代码,学习者可以深入了解计算机视觉中的图像拼接技术,同时也可以学习如何在MATLAB环境中结合深度学习技术解决实际问题。这将有助于提升对图像处理、特征匹配和几何变换的理解,为开发更复杂的计算机视觉应用打下坚实基础。
2025-04-17 03:31:48 1.26MB matlab 深度学习 人工智能
1
【内容概要】: 本资源包含SAM2(Segment Anything Model 2)图像分割项目的完整跑通版本,压缩包命名为`segment-anything-2.zip`。该项目利用先进的深度学习技术实现高效、精确的图像实例分割。压缩包内含预训练模型权重、配置文件、示例图像、数据处理脚本及详细的README文档,指导用户如何快速部署和运行模型,实现对任意图像的像素级分割。 【适用人群】: 适合计算机视觉领域的研究者、开发者及对图像分割技术感兴趣的技术人员。对于希望将最新图像分割技术应用于实际项目或研究工作的专业人士尤为适用。 【使用场景】: 广泛应用于物体识别、图像分析、医学影像处理、自动驾驶等领域。无论是科研实验、产品原型开发还是实际应用部署,SAM2都能提供强大、灵活的分割解决方案。 【目标】: 旨在为用户提供一套开箱即用的图像分割工具,帮助快速实现从图像到分割掩膜的转换,提升图像分析精度和效率。通过本资源,用户可以轻松掌握SAM2的核心技术和应用方法,加速项目研发进程。
2025-04-12 12:59:45 344.72MB 深度学习 计算机视觉 自动驾驶 图像分割
1
在Windows 10操作系统中,开发计算机视觉应用时,OpenCV和Qt是非常重要的工具。这里提到的 Mingw73_64 是一个针对Windows的GCC(GNU Compiler Collection)的变体,它为开发者提供了一个开源的编译环境,用于编译C++代码,特别是对于那些不希望使用Microsoft Visual Studio的开发者来说。 OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉库,它包含了众多图像处理和计算机视觉的算法。这个开发包是用Mingw73_64编译的,意味着它是为Windows平台设计的,并且能够与使用该编译器的项目无缝集成。OpenCVConfig.cmake和OpenCVConfig-version.cmake文件是OpenCV库配置文件,用于CMake构建系统,它们提供了关于OpenCV库的路径、版本和其他编译信息,使得在CMakeLists.txt中轻松找到并链接OpenCV库成为可能。 Qt是一个跨平台的应用程序开发框架,尤其适合图形用户界面(GUI)的开发。版本V5.12.12是Qt的一个稳定版本,提供了丰富的API和工具,支持多种操作系统,包括Windows。在计算机视觉项目中,Qt可以用来创建用户界面,展示OpenCV处理后的图像或视频。 "setup_vars_opencv3.cmd"脚本通常用于设置环境变量,以便在命令行环境中使用OpenCV。运行这个脚本会将必要的路径添加到系统的PATH变量中,使得编译器和链接器可以找到OpenCV的头文件和库文件。 "LICENSE"文件包含了这个开发包的许可协议,这对于开源软件至关重要,因为它规定了如何合法地使用、修改和分发软件。 "include"目录包含了OpenCV库的所有头文件,这些头文件包含了函数声明和类定义,开发者在编写代码时需要包含它们来使用OpenCV的功能。 "x64"目录可能包含了针对64位操作系统的OpenCV动态链接库(.dll)和静态库(.lib)。动态链接库在运行时由操作系统加载,而静态库则在编译时被合并到应用程序中。 "etc"目录通常包含配置文件或其他辅助数据,但具体的内容取决于开发包的实现。 这个压缩包提供了一个在Windows 10上使用Mingw73_64编译的OpenCV库,以及Qt V5.12.12版本,使得开发者可以快速开始计算机视觉项目。为了使用这个库,开发者需要熟悉CMake构建系统,以及如何在Qt Creator或命令行环境下配置和编译项目。同时,了解OpenCV的基本概念和函数,以及Qt的GUI编程,都是必不可少的。通过这个开发包,你可以构建从图像处理到复杂视觉算法的各种应用程序。
2025-04-08 14:04:22 14.41MB opencv 计算机视觉 Mingw64
1
每年有超过 400,000 例新发肾癌病例,手术是其最常见的治疗方法。由于肾脏和肾脏肿瘤形态的多样性,目前人们对肿瘤形态如何与手术结果相关 ,以及开发先进的手术计划技术 非常感兴趣。自动语义分割是这些工作的一个很有前途的工具,但形态异质性使其成为一个难题。 这一挑战的目标是加速可靠的肾脏和肾脏肿瘤语义分割方法的发展。我们已经为 300 名在我们机构接受部分或根治性肾切除术的独特肾癌患者的动脉期腹部 CT 扫描生成了真实语义分割。其中 210 个已发布用于模型训练和验证,其余 90 个将保​​留用于客观模型评估。
2025-04-01 19:37:00 33.12MB 计算机视觉 unet python 图像分割
1
在本压缩包“MATLAB计算机视觉与深度学习实战代码 - 基于Hough变化的答题卡识别.rar”中,包含的是《MATLAB计算机视觉与深度学习实战》一书的相关实践代码,主要聚焦于利用Hough变换进行答题卡的识别。这个主题涉及到计算机视觉、深度学习以及相关的算法和人工智能应用,这些都是现代科技领域的热门话题。接下来,我们将深入探讨这些知识点。 MATLAB是MathWorks公司开发的一种高级编程环境,尤其适用于数值计算、符号计算、数据可视化、图像处理和机器学习等领域。在计算机视觉中,MATLAB提供了强大的工具箱,如Image Processing Toolbox和Computer Vision Toolbox,使得开发者可以方便地实现各种图像处理和分析算法。 Hough变换是计算机视觉中一种经典且实用的检测线、圆等几何形状的方法。它通过在参数空间中构建累加器,找出图像中潜在直线的参数对应的最大值,从而确定直线的存在。在答题卡识别的应用中,Hough变换被用来检测答题卡上的格子线,以便进一步定位和识别填涂的选项。 深度学习是人工智能的一个分支,它模拟人脑神经网络的工作方式来学习和解决问题。深度学习模型,如卷积神经网络(CNN),在图像识别任务上表现出了卓越的性能。在答题卡识别中,可能使用预训练的CNN模型对答题卡的图像进行预处理,例如噪声去除、尺度不变性处理和特征提取,为后续的Hough变换提供优化的输入。 在实际操作中,答题卡识别通常包括以下步骤: 1. 图像预处理:去除背景噪声,增强线条对比度,确保答题卡清晰可见。 2. 线条检测:使用Hough变换检测答题卡的格子线,确定其位置和方向。 3. 区域分割:根据检测到的线条,将答题卡分割成独立的答题区域。 4. 选项识别:对于每个区域,可能采用CNN或其他机器学习算法来识别填涂的选项。 5. 结果整合:将所有区域的识别结果汇总,形成完整的答案。 此外,为了提高识别的准确性和鲁棒性,可能还需要引入数据增强、模型优化和后处理技术。数据增强可以增加模型的泛化能力,例如旋转、缩放和裁剪图像;模型优化则涉及调整网络结构和超参数,以提升模型性能;后处理步骤可能包括连通组件分析和形态学操作,以确保最终识别结果的精确性。 这个压缩包中的代码实例为我们提供了一个了解和学习如何结合MATLAB、计算机视觉算法(如Hough变换)和深度学习技术来解决实际问题的宝贵资源。无论是对学术研究还是工业应用,掌握这些知识都将对提升AI项目的效果大有裨益。
2025-03-30 19:26:54 5.54MB matlab 深度学习 人工智能
1
深度学习中的目标检测技术是计算机视觉的一个重要分支,它涉及到从图像或视频中识别出感兴趣的目标物体,并对其进行定位的过程。本文将介绍目标检测的深度学习框架,包括Rcnn系列模型,它们是如何工作的,以及一些其他的深度学习架构。 物体检测问题可以概述为计算机视觉中的四个基本任务:图像分类、图像定位、物体检测和物体分割。图像分类旨在识别图片中的主要物体并将其归类到预定义的类别中;图像定位是指在图片中标注出物体的位置;物体检测在图像分类的基础上,需要检测到图片中所有的物体,并给出每个物体的边界框;物体分割则进一步细化,需要逐像素地识别出图像中的物体,并给出准确的轮廓。在无人驾驶领域,这些技术被广泛应用于道路场景的理解,以辅助车辆做出准确的导航和决策。 在目标检测的发展历程中,有一系列的经典算法,如Deformable Parts Model(可变形部件模型),它使用了基于部件的方法来进行物体检测,尤其在2010年Felzenszwalb等人的工作“Object Detection with Discriminatively Trained Part Based Models”中,提出了包括SGD训练方法、NMS(非极大值抑制)和hard example挖掘等技术。这些技术至今仍在使用,对后续的方法产生重要影响。 接下来,Rcnn系列模型在目标检测领域产生了深远的影响。RCNN(Regions with CNN features)是一个里程碑式的工作,它通过区域建议来定位图像中的物体,并使用CNN提取特征进行分类。Fast RCNN通过RoI Pooling改进了特征提取过程,大大提高了效率。Faster RCNN进一步引入了区域建议网络(Region Proposal Network,RPN),实现了端到端的训练,并大幅度提升了检测速度。 在Faster RCNN的基础上,Mask RCNN增加了目标分割的功能,能够同时输出物体的边界框和精确的像素级掩码。这一系列的进展不仅优化了模型的检测速度,也提高了检测精度。除此之外,还有其他的一些模型,例如RFCN(Region-based Fully Convolutional Network),它使用全卷积网络来实现端到端的训练和检测。 PyTorch代码的引入使得深度学习模型的实现变得更加直观和易于操作。在七月在线课程中,将对这些模型框架进行深入的代码讲解,使学员能够更好地理解模型背后的原理以及如何在实际中应用。 除了模型和算法,物体检测的研究还会关注最新的会议论文和进展。比如ECCV(European Conference on Computer Vision)2018会议上的工作,为这一领域的研究人员和实践者提供了新的思路和方向。 在应用方面,目标检测技术在无人驾驶中的应用显得尤为重要。课程将通过无人驾驶这一应用场景,深入探讨物体检测与物体分割技术如何一起工作,并在实际中发挥作用。 在教学方式上,七月在线课程对以往的课程内容进行了更新,使用80%的中文内容,并对授课顺序进行了调整,使得课程内容更加系统和连贯。此外,所有的教学资料都被移植到Google在线幻灯片中,方便学员的学习和复习。 总结来说,深度学习的目标检测技术是计算机视觉领域的一项核心任务,涉及到图像理解的各个方面。从经典的Deformable Parts Model到Rcnn系列模型,再到近年来的Mask RCNN和PyTorch代码实现,目标检测技术一直在快速发展和进步。无人驾驶等实际应用场景对目标检测技术的需求推动了相关技术的研究和应用,使之成为推动人工智能技术发展的重要力量。
2025-03-26 21:53:51 2.99MB 深度学习 目标检测 计算机视觉
1
数据集-目标检测系列- 消防车 检测数据集 fire_truck >> DataBall 标注文件格式:xml​​ 项目地址:https://github.com/XIAN-HHappy/ultralytics-yolo-webui 通过webui 方式对ultralytics 的 detect 检测任务 进行: 1)数据预处理, 2)模型训练, 3)模型推理。 脚本运行方式: * 运行脚本: python webui_det.py or run_det.bat 根据readme.md步骤进行操作。 目前数据集暂时在该网址进行更新: https://blog.csdn.net/weixin_42140236/article/details/142447120?spm=1001.2014.3001.5501
2025-01-07 15:52:37 7.04MB yolo 目标检测 python 计算机视觉
1
内容概要:该文档介绍了使用YOLOv11与OpenPose相结合来开发的一个摔倒姿态识别系统的设计与实现细节。系统主要特征体现在高速精准检测物体及人体姿态的能力上,同时还通过数据增强等方式提升了模型性能,在软件界面上也实现了易用性和人性化设置。 适用人群:面向计算机视觉领域的研究和开发者以及对图像分析有兴趣的专业技术人员。 使用场景及目标:适用于老年人照护中心、医院等公共场所的安全监视系统,能够在人发生摔倒的情况下快速作出反应。 其他说明:提出了未来的改进方向如集成智能警报和实时摄像头检测等功能模块以拓展系统实用价值。
1