前段时间在网上看到ECharts这项技术,感觉他的功能非常强大,就去学习研究了下,这个是我练习折线图的实例,希望对各位有所帮助
2019-12-21 22:24:30 3.77MB ECharts 折线图
1
关于OPENGL制作的,飘动的旗帜,有详细的源代码,可直接运行
2019-12-21 22:23:28 889KB 有详细的源代码 可直接运行
1
jsp课程设计拍卖网源代码,可以直接运行结合javascript和javabean,运用mysql数据库
2019-12-21 20:55:11 26.56MB jsp javascript javabean web
1
标题中的“何凯明去雾算法matalab源代码,可直接运行”指的是采用何凯明博士提出的图像去雾算法,并且提供了相应的Matlab实现,可以直接运行。何凯明是计算机视觉领域的知名专家,他的去雾算法在图像处理中具有重要地位,常用于改善因大气散射导致的图像模糊问题。 在图像处理中,去雾算法是一种恢复图像清晰度的技术,尤其对于户外拍摄或低能见度条件下的照片尤为关键。何凯明的去雾算法主要基于物理模型,假设大气层对光的散射可以用一个全局的透射率(transmission map)来描述。这个算法通过分析图像的暗通道特性,估计透射率,并结合全局和局部信息来恢复图像的清晰度。 描述中提到“何凯明博士的图像去雾算法源代码,经调试可直接运行处理模糊图片”,这意味着你将获得一份已经过调试、可以直接在Matlab环境中运行的代码。这对于学习和研究图像处理技术的人员来说是非常有价值的资源。你可以直接使用这些代码来处理你的模糊图片,无需从零开始编写算法。 在Matlab中实现图像去雾算法,通常会涉及到以下几个关键步骤: 1. **暗通道预处理**:找到图像中最暗的部分,这部分通常是由于雾的影响造成的,可以用来估计大气散射。 2. **透射率估计**:根据暗通道特性,估算出图像中每个像素点的透射率。 3. **大气光计算**:分析图像全局亮度来估计大气光,这是影响图像去雾效果的关键因素。 4. **恢复清晰图像**:利用透射率和大气光信息,通过物理模型对图像进行反卷积,恢复清晰图像。 标签“图像去雾 算法”明确了这个压缩包的主要内容是关于图像去雾的算法实现。文件名称“cvpr09 defog(matlab)”可能表明这个算法是在2009年的计算机视觉与模式识别会议(CVPR)上发表的,而“defog”直接对应了去雾这一功能,表示这是用于去雾的代码。 这个资源对于学习图像处理,尤其是对去雾算法感兴趣的开发者或研究人员非常有帮助。通过研究和实践这个源代码,不仅可以深入了解何凯明的去雾算法,还可以提升在Matlab中的编程能力,为自己的项目或研究提供强大的工具支持。
2019-12-21 20:50:16 226KB 图像去雾
1
实训项目-基于MFC的网络监控项目源代码,可以直接运行
2019-12-21 20:40:32 333KB 网络监控 实训 MFC
1
bp神经网络源代码,可直接运行,需要的可以下载学习一下。
2019-12-21 18:57:59 7.28MB 神经网络
1