我们关于“ 文章介绍了该软件包,并提供了背景信息。 Pytorch Forecasting旨在通过神经网络简化实际案例和研究的最新时间序列预测。目标是为高级专业人员提供最大程度的灵活性,并为初学者提供合理的默认值的高级API。具体来说,该软件包提供了 一个时间序列数据集类,它抽象化处理变量转换,缺失值,随机子采样,多个历史记录长度等。 基本模型类,提供时间序列模型的基本训练,以及在张量板中的记录和通用可视化,例如实际与预测以及依存关系图 用于时间序列预测的多种神经网络体系结构已针对实际部署进行了增强,并具有内置的解释功能 多地平线时间序列指标 Ranger优化器,用于更快的模型训练 使用调整 该程序包基于构建,可以直接使用CPU,单个和多个GPU进行培训。 安装 如果您在Windows上工作,则需要先使用以下命令安装PyTorch: pip install torch -f https
2021-07-21 11:49:24 3.37MB learning time lightning gpu
1
风力发电预测 这是根据我的硕士论文进行的一项实验,其主要重点是比较应用于时间序列问题的不同深度学习策略。 这项研究仅集中在循环和卷积体系结构上。 数据 数据由RedesEnergéticasNacionais(REN)收集,并基于葡萄牙电力系统中注入的风力。 从2010年第一天到2016年最后一天,它以15分钟的分辨率进行了采样。所收集的数据适用于与REN遥测系统相连的所有风电场。 数据在data文件夹下。 客观的 主要任务是对产生的风力进行预测。 将要预测三个视野。 一小时,六小时和24小时,这意味着在提前一小时的预测中将预测4分(15、30、45和60分钟)。 演算法 测试了以下体系结构列表: RNN架构[RNN + GRU + LSTM单元] 扩张式递归架构 编码器-解码器体系结构 编码器-解码器+注意系统体系结构 准RNN Wavenet TCN 有关模型的详细说明,请检查链接
2021-07-16 11:18:39 1.86MB Python
1
深度系列 用于时间序列预测的深度学习模型。 楷模 Seq2Seq /注意 WaveNet 变压器/变压器 快速开始 from deepseries . models import Wave2Wave , RNN2RNN from deepseries . train import Learner from deepseries . data import Value , create_seq2seq_data_loader , forward_split from deepseries . nn import RMSE , MSE import deepseries . functional as F import numpy as np import torch batch_size = 16 enc_len = 36 dec_len = 12 series_len = 1000
2021-06-21 16:57:37 111KB deep-learning regression pytorch kaggle
1
PM2.5的时间序列预测 基于Keras的LSTM实现的PM2.5的时间序列预测。 环境:python 3.6.6,Tensorflow 1.15.0,Keras 2.3.1
2021-04-12 18:12:29 7.61MB
1
澳大利亚旅游数据集的时间序列和预测 对于这个项目,我一直在使用几种不同的算法,每种算法都有明确的解释: 数据集探索 数据预处理 时间序列分析 ARIMA的时间序列预测 先知的时间序列预测 LSTM样本外预测 LSTM对未来的一步一步预测 希望你能在学习的同时享受:)
2021-03-22 16:04:52 1.88MB JupyterNotebook
1