pytorch-forecasting:使用PyTorch进行时间序列预测-源码

上传者: 42097450 | 上传时间: 2021-07-21 11:49:24 | 文件大小: 3.37MB | 文件类型: ZIP
我们关于“ 文章介绍了该软件包,并提供了背景信息。 Pytorch Forecasting旨在通过神经网络简化实际案例和研究的最新时间序列预测。目标是为高级专业人员提供最大程度的灵活性,并为初学者提供合理的默认值的高级API。具体来说,该软件包提供了 一个时间序列数据集类,它抽象化处理变量转换,缺失值,随机子采样,多个历史记录长度等。 基本模型类,提供时间序列模型的基本训练,以及在张量板中的记录和通用可视化,例如实际与预测以及依存关系图 用于时间序列预测的多种神经网络体系结构已针对实际部署进行了增强,并具有内置的解释功能 多地平线时间序列指标 Ranger优化器,用于更快的模型训练 使用调整 该程序包基于构建,可以直接使用CPU,单个和多个GPU进行培训。 安装 如果您在Windows上工作,则需要先使用以下命令安装PyTorch: pip install torch -f https

文件下载

资源详情

[{"title":"( 79 个子文件 3.37MB ) pytorch-forecasting:使用PyTorch进行时间序列预测-源码","children":[{"title":"pytorch-forecasting-master","children":[{"title":"codecov.yml <span style='color:#111;'> 121B </span>","children":null,"spread":false},{"title":".github","children":[{"title":"ISSUE_TEMPLATE.md <span style='color:#111;'> 573B </span>","children":null,"spread":false},{"title":"PULL_REQUEST_TEMPLATE.md <span style='color:#111;'> 428B </span>","children":null,"spread":false},{"title":"workflows","children":[{"title":"pypi_release.yml <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"automerge.yml <span style='color:#111;'> 782B </span>","children":null,"spread":false},{"title":"test.yml <span style='color:#111;'> 3.97KB </span>","children":null,"spread":false},{"title":"code_quality.yml <span style='color:#111;'> 2.38KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"poetry.lock <span style='color:#111;'> 201.81KB </span>","children":null,"spread":false},{"title":"pytorch_forecasting","children":[{"title":"models","children":[{"title":"deepar","children":[{"title":"__init__.py <span style='color:#111;'> 19.66KB </span>","children":null,"spread":false}],"spread":true},{"title":"basic_rnn","children":[{"title":"__init__.py <span style='color:#111;'> 10.86KB </span>","children":null,"spread":false}],"spread":true},{"title":"baseline.py <span style='color:#111;'> 1.53KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 978B </span>","children":null,"spread":false},{"title":"nn","children":[{"title":"embeddings.py <span style='color:#111;'> 3.32KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 217B </span>","children":null,"spread":false},{"title":"rnn.py <span style='color:#111;'> 7.55KB </span>","children":null,"spread":false}],"spread":true},{"title":"mlp","children":[{"title":"submodules.py <span style='color:#111;'> 1.53KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 7.13KB </span>","children":null,"spread":false}],"spread":true},{"title":"base_model.py <span style='color:#111;'> 78.42KB </span>","children":null,"spread":false},{"title":"nbeats","children":[{"title":"sub_modules.py <span style='color:#111;'> 6.25KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 15.79KB </span>","children":null,"spread":false}],"spread":true},{"title":"rnn","children":[{"title":"__init__.py <span style='color:#111;'> 13.27KB </span>","children":null,"spread":false}],"spread":false},{"title":"temporal_fusion_transformer","children":[{"title":"tuning.py <span style='color:#111;'> 9.46KB </span>","children":null,"spread":false},{"title":"sub_modules.py <span style='color:#111;'> 15.54KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 36.45KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"utils.py <span style='color:#111;'> 10.23KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false},{"title":"optim.py <span style='color:#111;'> 8.45KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 37.53KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"examples.py <span style='color:#111;'> 3.28KB </span>","children":null,"spread":false},{"title":"encoders.py <span style='color:#111;'> 33.08KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 642B </span>","children":null,"spread":false},{"title":"timeseries.py <span style='color:#111;'> 87.31KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"examples","children":[{"title":"stallion.py <span style='color:#111;'> 5.73KB </span>","children":null,"spread":false},{"title":"nbeats.py <span style='color:#111;'> 2.74KB </span>","children":null,"spread":false},{"title":"ar.py <span style='color:#111;'> 3.88KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"stallion.parquet <span style='color:#111;'> 1.06MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"pytest.ini <span style='color:#111;'> 330B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"setup.cfg <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 5.23KB </span>","children":null,"spread":false},{"title":".pre-commit-config.yaml <span style='color:#111;'> 799B </span>","children":null,"spread":false},{"title":"docs","children":[{"title":"source","children":[{"title":"_templates","children":[{"title":"custom-base-template.rst <span style='color:#111;'> 121B </span>","children":null,"spread":false},{"title":"custom-module-template.rst <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false},{"title":"custom-class-template.rst <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false}],"spread":true},{"title":"models.rst <span style='color:#111;'> 9.07KB </span>","children":null,"spread":false},{"title":"contribute.rst <span style='color:#111;'> 1.32KB </span>","children":null,"spread":false},{"title":"faq.rst <span style='color:#111;'> 3.51KB </span>","children":null,"spread":false},{"title":"tutorials","children":[{"title":"stallion.ipynb <span style='color:#111;'> 2.12MB </span>","children":null,"spread":false},{"title":"ar.ipynb <span style='color:#111;'> 928.10KB </span>","children":null,"spread":false},{"title":"building.ipynb <span style='color:#111;'> 187.31KB </span>","children":null,"spread":false}],"spread":false},{"title":"getting-started.rst <span style='color:#111;'> 4.90KB </span>","children":null,"spread":false},{"title":"conf.py <span style='color:#111;'> 4.86KB </span>","children":null,"spread":false},{"title":"metrics.rst <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"tutorials.rst <span style='color:#111;'> 295B </span>","children":null,"spread":false},{"title":"index.rst <span style='color:#111;'> 2.41KB </span>","children":null,"spread":false},{"title":"data.rst <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"api.rst <span style='color:#111;'> 188B </span>","children":null,"spread":false},{"title":"_static","children":[{"title":"favicon.png <span style='color:#111;'> 785B </span>","children":null,"spread":false},{"title":"custom.css <span style='color:#111;'> 694B </span>","children":null,"spread":false},{"title":"logo.svg <span style='color:#111;'> 5.06KB </span>","children":null,"spread":false},{"title":"favicon.svg <span style='color:#111;'> 3.42KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"make.bat <span style='color:#111;'> 764B </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 217B </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 638B </span>","children":null,"spread":false}],"spread":true},{"title":"tests","children":[{"title":"test_data.py <span style='color:#111;'> 20.73KB </span>","children":null,"spread":false},{"title":"test_utils","children":[{"title":"test_autocorrelation.py <span style='color:#111;'> 436B </span>","children":null,"spread":false}],"spread":false},{"title":"test_models","children":[{"title":"test_rnn_model.py <span style='color:#111;'> 3.69KB </span>","children":null,"spread":false},{"title":"test_deepar.py <span style='color:#111;'> 4.46KB </span>","children":null,"spread":false},{"title":"test_temporal_fusion_transformer.py <span style='color:#111;'> 8.49KB </span>","children":null,"spread":false},{"title":"conftest.py <span style='color:#111;'> 5.83KB </span>","children":null,"spread":false},{"title":"test_mlp.py <span style='color:#111;'> 3.09KB </span>","children":null,"spread":false},{"title":"test_nn","children":[{"title":"test_rnn.py <span style='color:#111;'> 1.50KB </span>","children":null,"spread":false}],"spread":false},{"title":"test_nbeats.py <span style='color:#111;'> 2.13KB </span>","children":null,"spread":false}],"spread":false},{"title":"conftest.py <span style='color:#111;'> 1.89KB </span>","children":null,"spread":false},{"title":"test_metrics.py <span style='color:#111;'> 7.58KB </span>","children":null,"spread":false}],"spread":true},{"title":".readthedocs.yml <span style='color:#111;'> 686B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false},{"title":"pyproject.toml <span style='color:#111;'> 2.52KB </span>","children":null,"spread":false},{"title":"CHANGELOG.md <span style='color:#111;'> 10.94KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

  • huht3k :
    用户下载后在一定时间内未进行评价,系统默认好评。
    2021-08-18
  • fxfviolet :
    用户下载后在一定时间内未进行评价,系统默认好评。
    2021-08-06

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明