数字图像处理领域,边缘提取是一项至关重要的技术,它能够帮助我们识别图像中的物体边界,为后续的图像分析和理解提供关键信息。本主题聚焦于“数字图像边缘提取”,涉及傅里叶描述子的使用以及如何通过它们来复原图像边界,并进行二次取样和边缘检测。 傅里叶描述子是傅里叶变换在图像处理中的应用,它将图像从空间域转换到频域,以便更好地理解和分析图像的频率成分。傅里叶变换对于图像的特征提取非常有用,因为它可以揭示图像的高频和低频成分。高频部分通常对应于图像的边缘和细节,而低频部分则与图像的整体亮度和颜色变化有关。在图像复原过程中,傅里叶描述子可以帮助我们恢复或增强图像的边缘信息。 描述子的逆变换是将频域信息转换回空间域的过程,这个过程称为傅里叶逆变换。在边缘提取中,我们可能首先对图像进行傅里叶变换,然后对频域中的边缘相关频率进行操作,最后通过逆变换将处理后的频域图像转换回空间域,从而获得强化了边缘的图像。 接下来,对边界进行二次取样是一种常见的图像处理技术,它用于提高边缘检测的精度。二次取样通常指的是在原有的采样点基础上增加新的采样点,使得在边缘附近有更密集的采样点,这样可以更准确地捕捉到边缘的位置和形状。这种方法有助于减少边缘检测过程中的噪声影响,提升边缘轮廓的清晰度。 边缘检测算法是边缘提取的关键步骤,其目的是找到图像中像素强度显著变化的地方。常用的边缘检测算法包括Canny算子、Sobel算子、Prewitt算子等。这些算法通过计算图像梯度强度和方向来识别潜在的边缘位置,然后应用非极大值抑制来消除噪声引起的假边缘,并进行双阈值检测来确定最终的边缘。 在MATLAB环境中,我们可以利用内置的函数或者自定义代码来实现上述过程。例如,MATLAB提供了`imfilter`函数用于滤波,`fspecial`函数可以创建各种滤波器(如高斯滤波器、Sobel滤波器),`边缘检测`函数如`edge`可用于执行Canny边缘检测。通过组合这些工具,我们可以实现描述中提到的图像处理流程。 "数字图像边缘提取"是一个复杂而重要的主题,涉及到图像处理的核心技术,如傅里叶变换、频域分析、二次取样和边缘检测算法。通过掌握这些技术,我们可以有效地提取出图像中的关键信息,这对于图像分析、计算机视觉以及机器学习等领域都有深远的影响。
1
数字图像处理MATLAB版+数字图像处理MATLAB版图片及代码 MATLAB是一种功能强大的编程语言和开发环境,广泛应用于数字图像处理领域。 全书共分11章,第1章讲解了MATLAB基础知识,让读者对MATLAB有一个概要的认识。第2~10章分别讲解了图像处理基础、图像运算、图像编码、图像变换、图像增强、图像复原、图像的分割、图像数学形态学处理和小波图像处理等内容,向读者展示了MATLAB对数字图像进行处理的方法及技巧。第11章总结性地介绍数字图像在各个领域中的应用,让读者进一步领略到MATLAB的强大功能和广泛的应用范围。
2024-06-30 14:24:58 76.97MB matlab 图像处理
1
电车轨道与障碍物检测(SJTU数字图像处理课程设计).zip
2024-06-26 14:40:47 957KB
1
数字图像处理与机器视觉++Visual+C++与Matlab实现,原书的pdf版,不是代码,对应书籍的代码:http://download.csdn.net/detail/lvhongwei0627/5108355, 该书对于初学数字图像处理、机器视觉的朋友,帮助颇大,原书的pdf很难找,对应代码,注重实践!加油!空间里还有其他学习数字图像处理、机器视觉的好资料,欢迎学习、交流!
1
本实验报告旨在介绍遥感数字图像校正的基本方法和步骤,具体包括辐射定标、大气校正和几何校正。本实验使用软件ENVI 5.0版本作为平台进行实验,以校正一幅遥感数字图像为例。 在实验目的方面,本实验旨在: 1.进行辐射定标,将数字图像中的原始数据转换为能量单位。 2.进行大气校正,消除大气的影响,使得数字图像能够更加准确地反映地面的信息。 3.进行几何校正,校正数字图像的几何形态,使得数字图像在空间上更加准确地对应地面。 在实验内容方面,本实验分为以下三个步骤: 1.进行FLAASH校正,使用FLAASH算法进行辐射定标,将数字图像中的原始数据转换为辐射亮度温度,消除仪器响应的影响。 2.进行大气校正,使用MODTRAN模型对数字图像进行大气校正,消除大气的影响,得到真实的地表反射率。 3.进行几何校正,进行数字图像的投影和重采样,使得数字图像能够更加准确地对应地面的实际情况。 在实验数据和平台方面,本实验使用软件ENVI 5.0版本作为平台进行实验,并以一幅遥感数字图像为实验数据。实验数据包括原始数字图像和校正后的数字图像。
2024-06-05 10:10:03 7.05MB envi 实验报告 遥感数字图像处理 gis
1
灰度和彩色图像处理,word版本 可编辑,附分析与总结 读取二进制文件lab3prob4,文件的尺寸是435*580,图像数据类型为‘uint8’,(1)读取并显示图像,colormap设置为gray;(2)重新显示(1)中图像,colormap设置为HSV; (3)自己尝试定义一个新的colormap,幅度值的变化范围为[0 255]。 分别读取二进制文件lab3prob3r, lab3prob3g, lab3prob3b, 图像数据类型为‘uint8’,图像的尺寸是1024*1024,(1)合并RGB三通道,并显示图像;(2)对RGB三个通道分别进行灰度线性处理,实现三个通道的灰度值均值为140,均方差为60,然后再合并显示图像;(3)把RGB颜色模型转换到HSV颜色模型,对V分量进行线性变换实现均值为140,均方差为60,然后显示新的图像;(4)比较(2)和(4)中图像,进行简单分析和说明; 创建如下图1所示图像,一个圆为红色,一个圆为蓝色,另外一个圆为绿色,圆的半径为100。(1)组建一个RGB图使其显示如下颜色,B的中心坐标(400,375),G的中心坐标(300,420),R的中心坐标(300,300);(2)分别使R,G,B中的一个值为0.5 (原来为1,单位化后的值范围(0-1)),并显示得到的图的颜色;(3)创建如图2所示的颜色盘(中心坐标(100,100)),半径为100;(提示使计算在HIS空间,然后利用HSV2rgb转化);
2024-05-21 14:51:43 9.03MB 数字图像处理 实验报告 灰度和彩
1
基于matlab的二维码识别系统(GUI界面) 基于matlab的二维码识别系统(GUI界面) 基于matlab的二维码识别系统(GUI界面) 里面二维码图像都是小程序自动生成的
2024-05-16 18:51:59 445KB matlab 二维码识别 数字图像处理
1
数字图像处理与机器视觉--Visual C++与MATLAB实现》第2版DVD内容 内容推荐   《数字图像处理与机器视觉——Visual C++与Matlab实现(第2版)》将理论知识、科学研究和工程实践有机结合起来,内容涉及数字图像处理和识别技术的方方面面,包括图像的点运算、几何变换、空域和频域滤波、小波变换、图像复原、彩色图像处理、形态学处理、图像分割、图像压缩以及图像特征提取等;同时对机器视觉进行了前导性的探究,重点介绍了3种目前在工程技术领域非常流行的分类技术——人工神经网络(ANN)、支持向量机(SVM)和AdaBoost,并在配套给出的识别案例中直击光学字符识别(OCR)、人脸识别和性别分类等热点问题。   《数字图像处理与机器视觉——Visual C++与Matlab实现(第2版)》结构紧凑,内容深入浅出,讲解图文并茂,适合于计算机、通信和自动化等相关专业的本科生、研究生,以及工作在图像处理和识别领域一线的广大工程技术人员阅读参考。 共2个文件。z01和zip
2024-05-04 16:01:46 37.87MB 机器视觉
1
基于matlabBP神经网络交通限速标志识别系统GUI界面设计,数字图像处理知识,可以直接运行。 基于matlabBP神经网络交通限速标志识别系统GUI界面设计,数字图像处理知识,可以直接运行。 基于matlabBP神经网络交通限速标志识别系统GUI界面设计,数字图像处理知识,可以直接运行。
1
传统的字符分割方法一般针对单行车牌,本文提出一种针对单行和双行两种结构的车牌字符分割方法。首先进行图像预处理,减少噪声及环境干扰。将车牌图像分为两部分,对前两个字符的部分先垂直投影,再结合先验知识判断进而准确分割;对后五个字符的部分用垂直投影法确定动态阈值并结合连通域分析进行字符分割。实验结果表明,该方法同时适用于单双行结构车牌,对字符粘连断裂的情况也能很好的分割。
2024-05-03 10:50:52 2.19MB
1