基于LSTM循环神经网络空中目标意图识别_kereas源码+数据集+程序说明 程序设计语言为Python 3.7.6;集成开发环境为Anaconda。循环神经网络模型由Python的keras 2.3.0库实现。 数据集为:SCENARIO_DATA_UTF8.zip getData()函数负责读取xml文件,并处理成数据序列及对应的标签序列。参数data_length决定了所读取序列的长度。 getDocumentList()函数用于辅助getData()函数进行数据读取。 modelLSTM()用于实现最基本的循环神经网络模型,只是神经元类型为基础的LSTM。
基于GRU循环神经网络空中目标意图识别_kereas源码+数据+程序说明.zip 程序为使用GRU循环神经网络进行意图识别的程序 程序设计语言为Python 3.7.6;开发环境为Anaconda。循环神经网络模型由Python的keras 2.3.0库实现。 数据集为:SCENARIO_DATA_UTF8.zip 代码可以生成损失函数曲线,精确度曲线; 可自定义修改梯度下降方法,损失函数。
基于改进GRU(添加注意力机制)循环神经网络空中目标意图识别_kereas源码+数据+程序说明.zip 程序设计语言为Python 3.7.6;集成开发环境为Anaconda。循环神经网络模型由Python的keras 2.3.0库实现。 数据集为:SCENARIO_DATA_UTF8.zip getData()函数负责读取xml文件,并处理成数据序列及对应的标签序列。参数data_length决定了所读取序列的长度。 getDocumentList()函数用于辅助getData()函数进行数据读取。 modelAttentionAfterGRU()用于实现在GRU层之后添加Attention层的模型。 modelAttentionBiLSTM()用于实现在双向GRU层之后添加Attention层的模型。 全局变量INPUT_DIM表示输入特征的维度;TIME_STEPS = 500 表示输入到神经网络层序列的长度。 主函数中给出了一个示例:读取数据,划分训练集和测试集,多次训练神经网络模型进行交叉验证,计算加权错误率Weighted Error Rate和训练模型所用时间, 最后将
阿里关于意图识别、机器阅读、迁移学习等深度学习的实践以及应用,主要介绍了自然语言语义理解的方面的深度学习算法的在实际业务种的应用
2022-11-03 22:19:57 11.03MB 阿里 NLP 意图识别 机器阅读
1
(多媒体)网络数字孪生和意图引擎
意图分类和插槽填充是自然语言理解的两个基本任务。他们经常受到小规模的人工标签训练数据的影响,导致泛化能力差,尤其是对于低频单词。最近,一种新的语言表示模型BERT (Bidirectional Encoder Representations from Transformers),有助于在大型未标记的语料库上进行预训练深层的双向表示,并在经过简单的微调之后为各种自然语言处理任务创建了最新的模型。但是,并没有太多的工作探索Bert 在自然语言理解中的使用。在这项工作中,我们提出了一种基于BERT的联合意图分类和插槽填充模型。实验结果表明,与基于注意力的递归神经网络模型和插槽门控模型相比,我们提出的模型在多个公共基准数据集上的意图分类准确性,狭缝填充F1和句子级语义框架准确性均取得了显着提高。 文件是对原文的翻译与理解。
2022-06-01 16:40:38 391KB Bert 插槽填充 意图识别
1
Android播放视频的方式有三种: 一、使用意图播放,调用本地安装的播放器,选择一个进行播放。 二、使用VideoView播放(VideoView其实是对MediaPlayer的封装,使用起来很简单,但是缺少灵活性)。 三、使用MediaPlayer播放(将MediaPlayer对象用于视频播放能够为控制播放本身提供最大的灵活性)。 本文章只讲解使用意图播放视频,用于处理播放的具体机制也是MediaPlayer,其余的播放将在后面的文章中讲到。
2022-05-27 14:44:56 1.42MB Android 意图 播放 视频
1
Android使用意图传递数据PPT与源码.zip
2022-05-13 17:04:36 1.77MB android 源码软件
利用Intent意图开发技术,实现了一个简易的备忘录,其功能模块包括拨打电话和发送短信等。注意修改配置文件AndroidManifest.xml拨打电话和发送短信的权限。
1