由于激光点云数据的无序性、离散性、稀疏性,基于深度学习的三维点云数据的特征提取具有一定难度。针对目前局部信息提取不充分,区域信息的合并有限的问题,提出了一种基于层级边缘卷积的点云分类网络,用于三维视觉中点云模型识别任务。本文采用层级结构的思想,通过层级几何信息模块对特征进行有效提取和归纳。对于每个层级几何信息提取模块,首先对点云模型进行下采样并构建局部区域,对每个局部区域中点与点之间的距离和特征进行建模,获得局部区域的几何信息,最后聚合多个采样点的局部结构特征。实验结果表明,本算法在ModelNet40数据集上的识别准确率为91.5%。与已有的三维点云模型识别分类算法相比,本文算法能够更充分地提取局部信息,进一步提高三维点云模型分类的准确率
1