通过反射方式获取安卓 apk包的签名信息,通过日志打印的方式获取 apk keystore 或者jks文件的签名信息。
2024-07-24 22:18:05 5KB keystore 安卓签名
1
在Vue.js应用中实现PDF文件的上传、盖章与签名功能,可以极大提升用户体验,尤其在需要处理合同、文档审批等业务场景时。Vue.js是一个轻量级的前端框架,以其组件化、易上手的特性深受开发者喜爱。在这个过程中,我们需要结合其他库和技术来处理PDF文件,例如PDF.js用于显示PDF,PDF.js签署插件用于添加签名和盖章,以及可能的后端API来处理文件上传和下载。 我们要在Vue项目中引入PDF.js。可以通过npm安装`pdfjs-dist`库,这是一个PDF.js的官方发布版本: ```bash npm install pdfjs-dist --save ``` 接着,创建一个Vue组件,用于展示PDF文件。利用PDF.js提供的API加载PDF文件,并渲染到页面上。在组件中,可以定义一个方法来加载PDF: ```javascript ``` 接下来,我们需要处理盖章和签名功能。这里可以使用PDF.js签署插件,如pdf-signature或pdf-stamper。这些插件允许用户在PDF上添加图形化的签名和印章。以pdf-signature为例,安装插件: ```bash npm install vue-pdf-signature --save ``` 然后在Vue组件中引入并使用它: ```html ``` 在实际应用中,你可能需要一个后端服务来处理文件上传、存储和下载。例如,可以使用axios库发送文件到服务器: ```javascript import axios from 'axios'; async uploadFile(file) { const formData = new FormData(); formData.append('file', file); try { const response = await axios.post('/api/upload', formData); console.log('File uploaded successfully:', response.data); } catch (error) { console.error('Error uploading file:', error); } } ``` 下载文件则可以通过创建一个指向服务器的URL链接,并在用户点击下载时触发浏览器的下载行为: ```html 下载盖章文件 // ... methods: { downloadFile() { // 创建一个隐藏的可下载链接 const link = document.createElement('a'); link.href = this.downloadUrl; link.setAttribute('download', 'signed-file.pdf'); // 触发点击 document.body.appendChild(link); link.click(); // 然后移除 document.body.removeChild(link); }, }, ``` 以上就是使用Vue.js实现PDF文件上传、盖章与签名的基本流程。实际开发中,你可能还需要考虑更多细节,如错误处理、用户体验优化、文件权限控制等。在遵循Web标准和最佳实践的前提下,这个功能将为你的应用程序带来强大的文档处理能力。
2024-07-20 22:16:39 216KB vue.js
1
大型强子对撞机的出现以及建立未来对撞机作为ILC的提议,都旨在探索TeV尺度的新物理学,这证明了最近人们对跷跷板机制的对撞机现象学的关注是对的,其特征在于TeV尺度或更小。 最受欢迎的TeV比例跷跷板机制是反向跷跷板机制。 反向跷跷板机制有三种类型,但是只有一种涉及六种非标准重中微子的装置才引起关注。 在本文中,我们开发了一种基于希格斯三重态模型的反向跷跷板机制,并通过在LHC和ILC处产生双电荷希格斯并分析它们在轻子对中的随后衰变来模拟其对撞机现象。 我们发现,尽管新标量与标准标量解耦,但这些标量的信号可能会在LHC的当前运行或将来的ILC中检测到。 我们的模拟在参数空间区域中探查模型,该模型可为正态和反型情况生成正确的中微子质量并进行混合。
2024-07-18 20:39:55 733KB Open Access
1
在IT行业中,安全是至关重要的一个领域,尤其是在网络通信和数据传输中。C#和Java作为两种广泛应用的编程语言,经常被用来实现安全相关的功能,如加密、解密、签名和验签。本文将深入探讨C# SM2算法的加密解密及签名验签过程,并结合Java的兼容性进行讲解。 SM2算法是一种基于椭圆曲线密码学(ECC)的公钥密码算法,由中国商用密码行业协会提出,主要用于确保数据的安全性和完整性。它包含了对称加密、非对称加密、数字签名等功能,特别适合于移动设备和物联网设备,因为ECC在处理效率和安全性上都优于传统的RSA等算法。 在C#中实现SM2加密和解密,首先需要引入相应的库,如Bouncy Castle,这是一个广泛支持各种加密算法的开源库。在项目中添加引用后,可以创建SM2的公钥和私钥对,然后使用这些密钥进行数据的加解密操作。代码示例如下: ```csharp using Org.BouncyCastle.Crypto; using Org.BouncyCastle.Crypto.Parameters; // 生成密钥对 var keyPairGenerator = KeyPairGenerator.Instance("EC", "BC"); keyPairGenerator.Init(new ECKeyGenerationParameters(ECCurve.CreateFromValue("sm2p256v1"), new SecureRandom())); var keyPair = keyPairGenerator.GenerateKeyPair(); var publicKey = (ECPublicKeyParameters)keyPair.Public; var privateKey = (ECPrivateKeyParameters)keyPair.Private; // 加密 var cipher = CipherUtilities.GetCipher("ECIES"); var parameters = new ECDHCBasisParameters(publicKey.Parameters.Curve, publicKey.Parameters.G, publicKey.Parameters.Order); cipher.Init(true, new ParametersWithIV(new Pkcs1Encoding(new ECDHBasicAgreement()), IV)); var encryptedBytes = cipher.DoFinal(plaintext); // 解密 cipher.Init(false, privateKey); var decryptedBytes = cipher.DoFinal(encryptedBytes); ``` 签名和验签是保证数据完整性的关键步骤。在C#中,SM2签名和验签的实现如下: ```csharp // 签名 var signer = SignerUtilities.GetSigner("SM3withSM2"); signer.Init(true, privateKey); signer.Update(plaintext, 0, plaintext.Length); var signature = signer.GenerateSignature(); // 验签 signer.Init(false, publicKey); signer.Update(plaintext, 0, plaintext.Length); var isVerified = signer.VerifySignature(signature); ``` 在实际应用中,可能需要C#与Java之间的互操作,即Java应用能够处理由C#生成的加密或签名的数据,反之亦然。这需要两者的实现遵循相同的规范和标准。幸运的是,SM2算法在Java中也有相应的实现,如通过Bouncy Castle库。只要确保C#和Java使用的曲线参数、编码方式等一致,就可以实现跨平台的数据安全交换。 在"TEST"这个压缩包文件中,可能包含了一个C#实现的SM2加密解密和签名验签的Demo项目,以及与Java联调的相关示例代码。通过这些示例,开发者可以学习如何在实际项目中运用SM2算法,确保数据在C#和Java应用之间的安全传输。 总结来说,C#中的SM2算法提供了高效且安全的加密、解密、签名和验签功能,能够与Java平台无缝对接。通过理解和应用这些技术,开发者可以在跨平台的应用场景下保证数据的安全性和完整性,为软件开发提供坚实的安全基础。
2024-07-14 15:31:53 1.86MB java
1
方易通9853刷机包是一款专为9853型号设备设计的系统升级解决方案,它包含了一系列用于更新设备固件的必要文件。在Android系统中,刷机是改变设备原始操作系统的一种方法,通常是为了获取更多自定义权限或者安装特定版本的系统。这个刷机包可能是为了优化设备性能、修复已知问题或添加新功能。 apk签名是Android应用发布前的一个关键步骤,它确保了应用的完整性和开发者身份。在Android系统中,每个APK(Android应用程序包)都需要经过签名才能在设备上安装和运行。这是因为签名可以验证应用的来源,防止恶意修改,并确保应用在升级时不会覆盖用户的个人数据。描述中提到的“apk签名密钥”是指用于对APK进行数字签名的私钥,这通常是一个.key文件,与对应的公钥一起构成了密钥对。 “一键签名工具”是为了简化apk签名过程而设计的软件,它可以帮助开发者快速地对APK进行签名,无需手动操作复杂的命令行指令。这类工具通常会隐藏掉底层的签名细节,使得没有专业开发经验的用户也能轻松完成签名。描述中的提示“如果签名不成功建议降低jdk版本,如jdk1.8”表明,该签名过程可能依赖于特定版本的Java Development Kit(JDK),在使用更高版本时可能会遇到问题。JDK是开发和运行Java应用程序所必需的,其中包括了用于签名APK的工具,如`jarsigner`。 在实际操作中,开发者首先需要设置好JDK环境,然后使用`keytool`生成密钥对,接着用`jarsigner`对APK进行签名。如果遇到签名失败的情况,可能是因为JDK版本不兼容、密钥文件格式错误、签名命令参数错误等问题。降低到如JDK 1.8版本,可能是由于该版本更稳定,与签名工具的兼容性更好。 这个压缩包文件提供了方易通9853设备的刷机方案以及相关APK签名工具,对于拥有该设备并希望自定义其系统的用户或者开发者来说,这是一个非常实用的资源。正确地使用刷机包和签名工具,可以有效地管理设备的软件更新,同时保证应用的安全性和可靠性。
2024-07-10 11:57:46 29KB
1
在IT行业中,安全是至关重要的一个领域,尤其是在网络通信和数据传输中。Java作为一种广泛使用的编程语言,提供了强大的安全机制,其中包括RSA算法。RSA是一种非对称加密算法,以其发明者Ron Rivest、Adi Shamir和Leonard Adleman的名字命名。这种算法基于大整数因子分解的困难性,被广泛应用于数字签名、数据加密和身份验证。 1. RSA算法基础 RSA算法基于两个大素数p和q的乘积n=p*q,以及欧拉函数φ(n)=(p-1)*(q-1)。选取一个与φ(n)互质的数e作为公钥的指数,然后计算e关于φ(n)的模逆d作为私钥的指数。公钥由(n, e)组成,私钥由(n, d)组成。加密过程是明文m通过指数运算c=m^e mod n得到,解密过程则是密文c通过指数运算m=c^d mod n还原。 2. Java中的RSA实现 在Java中,RSA的实现主要依赖于`java.security`和`javax.crypto`这两个包。`KeyPairGenerator`类用于生成公钥和私钥对,`Signature`类用于签名和验签,`Cipher`类则用于加密和解密。 3. 生成RSA密钥对 使用`KeyPairGenerator`类可以生成RSA密钥对。实例化一个`KeyPairGenerator`对象,指定算法为"RSA",然后设置密钥长度(如1024位或2048位),最后调用`generateKeyPair()`方法生成公钥和私钥。 4. 签名与验签 - 签名:使用私钥对数据进行签名,通过`Signature`类的`initSign(PrivateKey)`初始化,然后调用`update()`方法处理待签名的数据,最后调用`sign()`方法生成签名。 - 验签:使用公钥对签名进行验证,通过`Signature`类的`initVerify(PublicKey)`初始化,同样更新数据,然后调用`verify()`方法检查签名的有效性。 5. 加密与解密 - 加密:使用公钥对数据进行加密,通过`Cipher`类的`init(Cipher.ENCRYPT_MODE, PublicKey)`初始化,然后调用`doFinal()`方法处理待加密的数据。 - 解密:使用私钥对加密后的数据进行解密,通过`Cipher`类的`init(Cipher.DECRYPT_MODE, PrivateKey)`初始化,再调用`doFinal()`方法恢复原始数据。 6. 压缩包中的`signature`文件可能包含的是一个示例程序,演示了如何在Java中使用RSA进行签名、验签、加密和解密。这个程序可能会包括以下关键部分: - 导入必要的安全库 - 创建并初始化`KeyPairGenerator` - 生成公钥和私钥 - 创建`Signature`和`Cipher`对象 - 对数据进行签名和验签 - 对数据进行加密和解密 理解并熟练运用这些步骤,开发者可以构建安全的Java应用程序,确保数据在传输过程中的完整性和安全性。在实际项目中,还需要考虑其他安全实践,如密钥管理、证书存储和生命周期管理等。
2024-07-06 16:35:23 8KB java
1
RSA算法是一种非对称加密算法,它在信息安全领域有着广泛的应用,如数据加密、数字签名等。该算法基于两个密钥:公钥和私钥。公钥可以公开,用于加密数据;私钥则需要保密,用于解密数据。在本案例中,"RSA加密解密签名(密钥任意长度)"意味着我们探讨的是RSA算法在处理密钥时不受特定长度限制的特性。 Java是实现RSA算法的常用平台,因为它提供了强大的加密库。在描述中提到的"java通用加密解密"表明这是一个Java实现的RSA工具包,可能适用于各种场景,包括Android环境。然而,对于Android应用,可能需要额外的步骤,比如添加依赖库,因为标准Java库在Android中可能不完全支持。 "注意必须GBK字符集转换"提示我们在处理中文字符时,需要使用GBK编码进行转换,这是因为在中文环境下,如果不进行适当的字符编码转换,可能会导致乱码问题。GBK是GB2312的扩展,包含了更多的汉字,因此在中国大陆使用较为普遍。 在提供的压缩包文件中,有以下四个文件: 1. `javabase64-1.3.1.jar`:这是Base64编码库,Base64是一种将二进制数据转换为可打印ASCII字符的编码方式,常用于在网络上传输或存储包含二进制数据的文本格式。 2. `RSAUtils.java`:这可能是实现RSA加密解密功能的工具类,包含RSA算法的核心操作,如生成密钥对、加密和解密等。 3. `Base64Utils.java`:这个文件可能封装了Base64编码和解码的方法,与`javabase64-1.3.1.jar`库配合使用,帮助在RSA过程中处理二进制数据。 4. `RSATester.java`:这应该是一个测试类,用于验证RSAUtils和Base64Utils的功能,确保加密、解密和签名过程的正确性。 在实际应用中,使用RSA加密通常分为以下几个步骤: 1. 生成密钥对:我们需要使用RSA算法生成一对密钥,包括一个公钥和一个私钥。 2. 数据加密:发送方使用接收方的公钥对数据进行加密,只有拥有对应私钥的接收方才能解密。 3. 数据传输:加密后的数据可以安全地在网络上传输,因为没有私钥的第三方无法解密。 4. 数据解密:接收方收到加密数据后,使用自己的私钥进行解密,恢复原始数据。 5. 数字签名:如果涉及到签名,发送方会使用自己的私钥对数据的哈希值进行加密,形成数字签名。接收方可以用发送方的公钥来验证这个签名,确保数据未被篡改。 总结来说,这个压缩包提供了一套基于Java的RSA加密解密和签名工具,支持任意长度的密钥,并考虑了GBK字符集转换,适用于Java及Android环境中的数据保护和安全通信。在使用这些工具时,应确保正确处理字符编码,同时理解并遵循RSA算法的基本原理和流程。
2024-07-06 16:05:11 7KB RSA 密钥任意长度
1
Python是一种功能强大的编程语言,可以用于各种不同的应用程序,包括手写体签名生成。 使用Python生成手写体签名 要使用Python生成手写体签名,多种字体替换,手写体数据集是一组手写体字母/数字样本,用于训练和生成新的手写体样式。有许多免费提供的手写体数据集,简简单单几十行代码就可以绘制一个个性签名,太牛了吧 赶快练习起来吧
2024-07-01 17:29:00 20.44MB python
1
Python艺术签名生成器是一款可以利用机器学习(ML)技术,根据用户输入的文本信息,自动生成个性化艺术签名的程序。它可以将输入的文本信息转化为一张图片,而且每张图片的效果都是独一无二的,可以为用户提供个性化的服务。 Python艺术签名生成器的主要原理是通过机器学习算法将文本信息转化为艺术签名的图片。算法的核心是使用一个神经网络模型,该模型学习从文本信息到艺术签名图片的映射关系。此外,还使用深度学习算法来自动生成艺术签名图片,以更好地满足用户的需求。 Python艺术签名生成器的实际应用场景很多,比如可以用于社交网络上的照片编辑,改变照片上的文字,使其成为一张个性化的艺术签名图片;可以用于生成报表、文档或幻灯片背景图片,增强文档的美观度;也可以用于电子商务网站的品牌认证,以提高网站的信誉度等等。 总之,Python艺术签名生成器是一款非常实用的程序,可以帮助用户快速、高效地生成独特的艺术签名,深受用户喜爱和认可。
2024-07-01 17:26:41 111KB python
1
mkimgproxy 生成imgproxy图像处理服务器的URL。支持使用键值和盐值进行URL签名 ImgProxy信息传递。 使用以下命令行生成IMGPROXY_KEY和IMGPROXY_SALT echo $( xxd -g 2 -l 64 -p /dev/random | tr -d ' \n ' ) 用法示例:使用适当的裁剪功能获取图像大小调整为800x500像素的URL,JPEG压缩质量= 70 from mkimgproxy import ImgProxy IMGPROXY_URL = "http://my-imgproxy-server/path" IMGPROXY_KEY = "9cbc4f564037858e5b9f2304f8540aa606943bddeaecb00a0b4a498092d0d65c079e291d3a2ddceafd23f1a29bb914fb
2024-06-26 14:38:50 3KB Python
1