这里的文件是: 1- load_data:从csv文件导入数据2- 可视化:打印特征分布的直方图。 在名为可视化的文件夹中的训练数据中的两个类。 3-estimate_:估计给定数据的模型4-classify_:根据模型和数据进行分类5-测试:使用 alpha=1:0.1:1000 测试 Naive 分类器并在可视化文件夹中打印一个名为 (accuracy 1-1000.pdf) 的图6- InspectTheModel:尝试衡量每个类的每个特征值的影响7-jointProb:计算给定一个类的两个给定特征值的联合概率8- 互信息:计算训练数据上的互信息以驱动最可能的依赖特征对。 9- testingBonus:使用候选特征对测试朴素分类器。
要运行演示,请运行testing.m,但是根据需要更改开始,步骤和结束!
2023-05-18 19:50:58
90KB
matlab
1